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Framework
Joint Frailty Models for recurrent and terminal events
Limitations

General context: When an event occurs many times for a subject
(e.g., appearance of new cancerous lesions, hospital readmissions,
repeated epileptic seizures)

Models developed to tackle this kind of data:
I Andersen-Gill’s model
I Shared frailty models
I . . .

Main assumptions: Independent and noninformative censoring

o Assumptions may be violated by the existence of a terminal event
that permanently stops the recurrent process (e.g., death)

o Ignoring terminal events in the analysis may lead to biased results

Solution: Considering joint models that analyze simultaneously the
recurrent and terminal events as well as their dependence
(both event types may have an impact on the other)
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Real-world applications

Framework
Joint Frailty Models for recurrent and terminal events
Limitations

Joint Frailty Models for the simultaneous analysis of:
I Recurrent events (e.g., appearance of new cancerous lesions)
I a Terminal event (typically, death)

For patient i:
I λRij the hazard function of recurrent event j
I λDi the hazard function of terminal event{

λRij(t|ui) = ui λR0(t) exp(βT
RxRij)

λDi(t|ui) = uαi λD0(t) exp(βT
DxDi)

λR0, λD0: baseline hazard functions
xRij , βR, xDi, βD: covariates and associated fixed effects
ui: random frailty term of patient i
α: modulates the association between recurrent and terminal events
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Motivations
Generalized Joint Frailty Models

Real-world applications

Framework
Joint Frailty Models for recurrent and terminal events
Limitations

Problem: What if a covariate does not satisfy the PH assumption?
Most common strategies:
I Considering time-varying coefficient
I Stratified analysis

Our proposal: switch to Generalised Survival Models (GSMs) !

Generalized version of the usual survival models

S(t) = g−1
[
η(t,x)

]

λ(t) =

λ0(t) exp(β′x)

g(x) = log(− log(x))

Proportional hazards

λ(t) =

λ0(t) + β′x

g(x) = − log(x)

Additive hazards

S(t)
1−S(t) =

S0(t)
1−S0(t)

exp(β′x)

g(x) = − logit(x)

Proportional odds

S(t) = 1−
Φ(k0(t) +β′x)

g(x) = −Φ(x)

Probit model
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Real-world applications

Observed data
Model formulation
Estimation

For patient i, we define:

Terminal event
I t?i : true terminal event time
I ci: censoring time

Recurrent events (j ∈ {1, . . . , ni})
I t?ij : true recurrent event time

For patient i, we observe:

I ti = min
(
t?i , ci

)
I δi = 1{t?i6ci}
I xDi

I tij = min
(
t?ij , t

?
i , ci

)
I δij = 1{t?ij=tij}
I
{
xRij | j = 1, . . . , ni

}
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Real-world applications

Observed data
Model formulation
Estimation

System of Generalized Survival Frailty Models:
SRij

(
t|ui ; ξR

)
=
[
g−1R

(
ηRij

(
t,xRij ; ξR

))]ui
(Recurrent events)

SDi
(
t|ui ; ξD

)
=
[
g−1D

(
ηDi
(
t,xDi ; ξD

))]uαi
(Terminal event)

where
I ui∼ Γ

(
1
θ ,

1
θ

)
I ξR, ξD: vector of parameters for recurrent and terminal events
I g−1R (·), g−1D (·): inverse link functions
I ηRij , ηDi: linear predictors for recurrent and terminal events

Nota bene: If g−1R (x) = g−1D (x) = exp(− exp(x)), our Generalized
Joint Frailty Models goes back to the usual Joint Frailty
Model.
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Real-world applications

Observed data
Model formulation
Estimation

Marginal contribution to the likelihood for patient i:

Li
(
ξ, θ
)

=

∫ +∞

0

Li
(
ξ|ui

)
p
(
ui ; θ

)
dui

where Li
(
ξ|ui

)
= ni∏

j=1

[
λRij

(
tij |ui ; ξR

)]δij
exp

(
−ui

∫ tij

ti(j−1)

λRij
(
t ; ξR

)
dt

)1−δi

×
[
λDi
(
ti|ui ; ξD

)]δi
exp

(
−uαi

∫ ti

0
λDi
(
t ; ξD

)
dt

)

I Parameters to estimate: ξ =
(
ξTR, ξ

T
D, θ, α

)T
I Maximum likelihood estimation using the Levenberg-Marquardt algorithm
I Integrals approximated using Gauss-Hermite quadrature
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Real-world applications

Observed data
Model formulation
Estimation

Only the writing of the hazard functions differs:

λRij
(
t ; ξR

)
= −

g−1
′

R

(
ηRij

(
t,xRij ; ξR

))
g−1R

(
ηRij

(
t,xRij ; ξR

)) ∂ηRij
(
t,xRij ; ξR

)
∂t

λDij
(
ti ; ξD

)
= −

g−1
′

D

(
ηDi
(
t,xDi ; ξD

))
g−1D

(
ηDi
(
t,xDi ; ξD

)) ∂ηDi
(
t,xDi ; ξD

)
∂t

For PH and AH submodels:
I Baseline hazard functions computed using parametric distributions

or M-splines (smooth estimation by likelihood penalization)

`(ξ, θ) − κR
∫ +∞

0

[
λ′′R0(t)

]2
dt − κD

∫ +∞

0

[
λ′′D0(t)

]2
dt

I Time-varying coefficients are allowed (using B-splines)
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Real-world applications

Observed data
Model formulation
Estimation

Special case of additive models:

All estimated hazards have to be non-negative!

Constrained optimization problem:

max
ξ,θ

`(ξ, θ) such that
{
λRij

(
tij ; ξR

)
> 0, i = 1, . . . , N, j = 1, . . . , ni

λDi
(
ti ; ξD

)
> 0, i = 1, . . . , N

To solve it: Iterative maximization of

`(ξ, θ) − νR
2

N∑
i=1

ni∑
j=1

λ2Rij
(
tij ; ξR

)
1{λRij(tij ;ξR)<0}

− νD
2

N∑
i=1

λ2Di
(
ti ; ξD

)
1{λDi(ti;ξD)<0}
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Real-world applications

Shared Frailty GSMs — Diabetic retinopathy data
Joint Frailty GSMs — Readmission data

The diabetic retinopathy study:
I Each patient had diabetic retinopathy on both eyes, which can lead

to blindness
I Objective: assess whether laser treatment was effective in delaying

blindness
I Treatment administered to one randomly-selected eye in each

patient, leaving the other untreated

Focus on patients with adult diabetes:
I 83 patients
I Observed follow-up time: time between the initiation of treatment

until the time when visual acuity dropped to below 5/200
I Possible censorship due to study dropout or end of the study
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Generalized Joint Frailty Models

Real-world applications

Shared Frailty GSMs — Diabetic retinopathy data
Joint Frailty GSMs — Readmission data

Treatment as covariate: treatedij =

{
1 if eye j of patient i is treated
0 for not treated

Results:
Treatment effect Frailty variance

Model β̂ (SE) Significance θ̂ (SE) Significance AIC

shared frailty PHM -1.59 (0.32) ??? 1.13 (0.55) ? 2.059
shared frailty AHM -0.02 (0.01) ??? 0.96 (0.45) ? 2.060
shared frailty POM -1.83 (0.38) ??? 0.76 (0.43) ? 2.064
shared frailty probit -0.99 (0.21) ??? 0.59 (0.40) • 2.067

Instead of fitting a single model (based on unverifiable assumptions),
we have four consistent models (based on different assumptions)
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Real-world applications

Shared Frailty GSMs — Diabetic retinopathy data
Joint Frailty GSMs — Readmission data

Focus on the additive hazards model:

λij
(
t| treatedij , ui ; ξ

)
= ui ×

[
λ0(t) + β(t) · treatedij

]
Comparison with nonparametric estimation of Martinussen et al :

0 10 20 30 40 50

0.
02

0
0.

02
5

0.
03

0
0.

03
5

0.
04

0

Estimated 
 baseline hazard function

Time (months)

λ 0
(t)

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

Estimated cumulative 
 baseline hazard function

Time (months)

Λ
0(t

)

0 10 20 30 40 50

−
0.

04
−

0.
03

−
0.

02
−

0.
01

0.
00

Estimated time−varying 
 treatment effect

Time (months)
β(

t)

0 10 20 30 40 50

−
1.

5
−

1.
0

−
0.

5
0.

0

Estimated cumulative 
 treatment effect

Time (months)

B
(t)

Advantages of our flexible semi-parametric approach:
I The hazard rates we estimate are forced to be positive
I Our method provides a direct estimate of the regression coefficients
β or β(t) and is not restricted to estimating cumulative effects.

I The baseline hazard function and the time-varying coefficients we
obtain are smooth functions — as is reasonable to expect.

Jocelyn Chauvet, Virginie Rondeau Generalized joint frailty models 04.07.21 11 / 15



Motivations
Generalized Joint Frailty Models

Real-world applications

Shared Frailty GSMs — Diabetic retinopathy data
Joint Frailty GSMs — Readmission data

The Readmission data:
I 403 patients with colorectal cancer who had a surgery
I Contains calendar time of their successive rehospitalizations
I 112 patients died during follow-up (the others were censored

because of migration or end of the study)

Covariates of interest for both recurrent event and death:
I sex (“Male” and “Female”)
I Dukes’ tumor stage (“A-B”, “C” or “D”)
I chemotherapy (“Non treated” and “Treated”)

Best models:
I Dual-PHM and dual-AHM
I Fixed effects for sex and Dukes’s tumor stage, time-varying effect for

chemotherapy
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Real-world applications

Shared Frailty GSMs — Diabetic retinopathy data
Joint Frailty GSMs — Readmission data

Results for fixed-effect and association parameters:
PHM/PHM AHM/AHM
Estimate (SE) Estimate (SE)

R
ec
ur
re
nt

ev
en
ts

Female -0.60 (0.15) ??? -0.20 (0.07) ??

Dukes’ stage C 0.47 (0.16) ?? 0.13 (0.06) ??

Dukes’ stage D 1.80 (0.20) ??? 1.87 (0.39) ???

D
ea
th

ev
en
t Female -0.31 (0.24) -0.05 (0.02) ??

Dukes’ stage C 1.50 (0.36) ??? 0.06 (0.02) ???

Dukes’ stage D 3.87 (0.39) ??? 1.00 (0.19) ???

θ
&
α Frailty variance (θ) 0.98 (0.11) ??? 0.99 (0.11) ???

Association parameter (α) 0.96 (0.20) ??? 0.88 (0.16) ???

LCV 1.03 1.05
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Shared Frailty GSMs — Diabetic retinopathy data
Joint Frailty GSMs — Readmission data

Dual-PHM plots
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Dual-AHM plots
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I For both dual-PHM and -AHM,
the treatment initially tends to
reduce the risk of readmission
but increases this risk after a
certain period of time.

I For the dual-PHM:
Treatment = prognostic factor
for death during the first year

I For the dual-AHM: Treatment
has no effect on the risk of
death
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Real-world applications

Shared Frailty GSMs — Diabetic retinopathy data
Joint Frailty GSMs — Readmission data

CONCLUSION

I New flexible class of GSMs
adapted to shared and joint
frailty models
↪→ 4 available models (PHM,

AHM, POM and probit)
↪→ Parametric or flexible

baseline hazard functions
↪→ Time-varying effect

I Our additive models have a
higher interpretability than
classical Aalen-type approaches

PERSPECTIVES

I Make the POM and the probit
model as flexible as PHM and
AHM.

I Adapt our strategy to joint
models for recurrent events and
a longitudinal biomarker.
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Thank you very much for your attention !

Chauvet, J., and Rondeau, V (2021). A flexible class of generalized
joint frailty models for the analysis of survival endpoints. Under
review.

+ Package R : frailtypack
https://CRAN.R-project.org/package=frailtypack
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