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Abstract

We address the component-based regularisation of a multivariate Generalized Lin-
ear Mixed Model (GLMM). A set of random responses Y is modelled by a GLMM,
using a set X of explanatory variables, a set T of additional covariates, and random
effects used to introduce the dependence between statistical units. Variables in X are
assumed many and redundant, so that regression demands regularisation. By contrast,
variables in T are assumed few and selected so as to require no regularisation. Reg-
ularisation is performed building an appropriate number of orthogonal components
that both contribute to model Y and capture relevant structural information in X.
To estimate the model, we propose to maximise a criterion specific to the Supervised
Component-based Generalised Linear Regression (SCGLR) within an adaptation of
Schall’s algorithm. This extension of SCGLR is tested on both simulated and real
data, and compared to Ridge- and Lasso-based regularisations.

Keywords: Component-model, Multivariate GLMM, Random effect, Structural Relevance,
Regularisation, SCGLR.
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1 Data, Model and Problem

A set of q random responses Y =
{
y1, . . . , yq

}
is assumed explained by two different sets

of covariates X =
{
x1, . . . , xp

}
and T =

{
t1, . . . , tr

}
, and a random effect ξ =

{
ξ1, . . . , ξq

}
.

Explanatory variables in X are assumed many and redundant while additional covariates
in T are assumed selected so as to preclude redundancy. Explanatory variables in T are
thus kept as such in the model. By contrast, X may contain several unknow structurally
relevant dimensions K < p important to model and predict Y , how many we do not know.
X is thus to be searched for an appropriate number of orthogonal components that both
capture relevant structural information in X and contribute to model Y .

Each yk is modelled through a Generalised Linear Mixed Model (GLMM) [7] assuming
conditional distributions from the exponential family. More specifically in this work, the
n statistical units are not considered independent but partitioned into N groups. The
random effects included in the GLMM aim at modelling the dependence of units within
each group.

Over the last decades, component-based regularisation methods for Generalised Linear
Models (GLM) have been developped. In the univariate framework, i.e. when Y = {y},
Bastien et al. [1] proposed an extension to GLM of the classical Partial Least Square (PLS)
regression, combining generalised linear regressions of the dependent variable on each of
the regressors considered separately. However, doing so, this method does not take into
account the variance structure of the overall model when building a component. Still in
the univariate framework, Marx [6] proposed a more appropriate Iteratively Reweighted
Partial Least Squares (IRPLS) estimation that builds PLS components using the weighting
matrix derived from the GLM. More recently, Bry et al. [2] extended the work by Marx
[6] to the multivariate framework with a technique named Supervised Component-based
Generalised Linear Regression (SCGLR). The basic principle of SCGLR is to build optimal
components common to all the dependent variables. To achieve it, SCGLR introduces a
new criterion which is maximised at each step of the Fisher Scoring Algorithm (FSA).

Besides, regularisation methods have already been developped for GLMM, in which
the random effects allow to model complex dependence structure. Eliot et al. [3] proposed
to extend the classical ridge regression to Linear Mixed Models (LMM). The Expectation-
Maximisation algorithm they suggest includes a new step to find the best shrinkage pa-
rameter - in the Generalised Cross-Validation (GCV) sense - at each iteration. More re-
cently, Groll and Tutz [4] proposed an L1-penalised algorithm for fitting a high-dimensional
GLMM, using Laplace approximation and efficient coordinate gradient descent.

Instead of using a penalty on the norm of the coefficient vector, we propose to base
the regularisation of the GLMM estimation on SCGLR-type components.

2 Reminder on SCGLR with additional covariates

In this section, we consider the simplified situation where each yk is modelled through a
GLM (without random effect) and only one component is calculated (K = 1). Moreover,
let us use the following notations:

ΠM
E : orthogonal projector on space E, with respect to some metric M .
〈X〉 : space spanned by the column-vectors of X.
M ′ : transpose of any matrix (or vector) M .

The first conceptual basis of SCGLR consists in searching for an optimal component
f = Xu common to all the y’s. Therefore, SCGLR adapts the classical FSA to predictors
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having colinear X-parts. To be precise, for each k ∈ {1, . . . , q}, the linear predictor writes:

ηk = (Xu)γk + Tδk

where γk and δk are the parameters associated with component f = Xu and covariates
T respectively. For identification, we impose u′Au = 1, where A may be any symmet-
ric definite positive matrix. Assuming that both the y’s and the n statistical units are
independent, the likelihood function L can be written:

L(y|η) =
n∏
i=1

q∏
k=1

Lk(y
k
i |ηki )

where Lk is the likelihood function relative to yk. Owing to the product γku, the “linearised
model” (LM) on each step of the associated FSA for the GLM estimation is not indeed
linear: an alternated least squares step was designed. Denoting zk the classical working
variables on each FSA’s step and W−1k their variance-covariance matrix, the least squares
on the LM consists in the following optimisation (see [2]):

min
u′Au=1

q∑
k=1

∥∥∥zk −ΠWk

〈Xu,T 〉z
k
∥∥∥2
Wk

⇐⇒ max
u′Au=1

q∑
k=1

∥∥∥ΠWk

〈Xu,T 〉z
k
∥∥∥2
Wk

which is also equivalent to :

max
u′Au=1

ψT (u), with ψT (u) =

q∑
k=1

∥∥∥zk∥∥∥2
Wk

cos2Wk

(
zk, 〈Xu, T 〉

)
(1)

The second conceptual basis of SCGLR consists in introducing a closeness measure of the
component f = Xu to the strongest structures in X. Indeed, ψT is a mere goodness-of-fit
measure, and must be combined with a structural relevance measure to get regularisation.
Consider a given weight-matrix W - e.g. W = 1

nIn - reflecting the a priori relative
importance of units, the most structurally relevant component would be the solution of:

max
u′Au=1

φ(u), with φ(u) =

 p∑
j=1

〈Xu|xj〉2lW

 1
l

=

 p∑
j=1

(u′X ′Wxjxj
′
WXu)l

 1
l

(2)

Tuning parameter l allows to draw components towards more (greater l) or less (smaller
l) local variable bundles as depicted on Figure 1.

To sum things up, s being a parameter that tunes the importance of the structural
relevance relative to the goodness-of-fit, SCGLR attempts a trade-off between (1) and (2),
solving:

max
u′Au=1

[φ(u)]s [ψT (u)]1−s (3)

3 Adapting SCGLR to grouped data

We propose to adapt SCGLR to grouped data, for which the independence assumption
of the statistical units is no longer valid (e.g. longitudinal or spatial correlated data). The
whithin-group dependence is modelled by a random effect. Consequently, each of the yk

is ultimately modelled through a GLMM. We call this adaptation “Mixed-SCGLR”.

3.1 Single component model estimation

We first present the method’s principle. Then we give a Bayesian justification of the
involved Henderson systems. Finally, we present our algorithm’s steps.

3



Figure 1: Polar representation of φl(u) according to the value of l, in the elementary case
of four coplanar variables.

Principle We maintain predictors colinear in their X-parts. Introducing a random effect
in each predictor and still imposing u′Au = 1, the linear predictors now write:

∀k ∈ {1, . . . , q} , ηkξ = (Xu)γk + Tδk + Uξk (4)

The random group effect is assumed different accross responses, yielding q random effects
ξ1, . . . , ξq. These are assumed independent and normally distributed: NN (0, Dk = σ2kAk),
where N is the number of groups and Ak a known matrix (Ak = IN in general).

Owing to the GLMM dependence structure, the FSA was adapted by Schall [9]. We,
in turn, adapt Schall’s algorithm to our component-based predictor (4), by introducing
the following alternated procedure at each step:

• Given γk, δk, ξ
k and σ2k, we build the component f = Xu by solving a (3)-type pro-

gram, which attempts a compromise between goodness-of-fit and structural relevance
criterions.

• Given u, zkξ being the classical working variables of the Schall’s algorithm and W−1ξ,k

their conditional variance-covariance matrix, parameters γk, δk and ξk are estimated
by solving the following Henderson system, which, subsequently, allows us to esti-
mate σ2k :(Xu)′Wξ,k(Xu) (Xu)′Wξ,kT (Xu)′Wξ,kU

T ′Wξ,k(Xu) T ′Wξ,kT T ′Wξ,kU

U ′Wξ,k(Xu) U ′Wξ,kT U ′Wξ,kU +D−1k


γkδk
ξk

 =

(Xu)′Wξ,k z
k
ξ

T ′Wξ,k z
k
ξ

U ′Wξ,k z
k
ξ


(5)

We chose Henderson’s method [5] since it is quicker than EM, for instance.

A Bayesian justification of the Henderson systems The conditional distribution
of the data, given the random effects, is supposed to belong to the exponential family, i.e.
for each k ∈ {1, . . . , q}, the conditional density of Y k

i | ξk may be written:

fY ki |ξk
(
yki , θ

k
i

)
= exp

{
yki θ

k
i − bk

(
θki
)

ak,i(φk)
+ ck

(
yki , φk

)}
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Linearisation step : Denoting Gk the link function of variable yk, gk its first derivative and
µk the conditional expectation (i.e. µk := E(Y k | ξk)), the working variables are obtained
as:

zkξ = ηkξ + ek, where eki = (yki − µki )gk(µki )

Their conditional variance-covariance matrices are:

W−1ξ,k := Var
(
zkξ | ξk

)
= Diag

([
gk

(
µki

)]2
Var

(
Y k
i | ξk

))
i=1,...,n

Estimation step : Our estimation step is based on the following lemma about normal
hierarchy:

Lemma 1 Given

y|θ ∼ N (Mθ,R)

θ ∼ N (α,Ω)

the posterior distribution is θ|y ∼ N (θ̂, C), where C =
(
M ′R−1M + Ω−1

)−1
and θ̂ satis-

fies:
C−1θ̂ = M ′R−1y + Ω−1α. (6)

Given u, we just apply Schall’s method [9] with our regularised linear predictors (4), which
is equivalent to consider the following modelling:

zkξ |γk, δk, ξk ∼ N
(

(Xu)γk + Tδk + Uξk, W−1ξ,k

)
(7)

(
γk, δk, ξ

k
)
∼ N


γ(0)k

δ
(0)
k

0

 ,

Bγ
k 0 0

0 Bδ
k 0

0 0 Dk




We suggest to choose a noninformative prior distribution for parameters γk et δk (as

inspired by Stiratelli et al. [10]) imposing Bγ
k
−1

= Bδ
k
−1

= 0. Current estimates of
parameters γk, δk and ξk are thus obtained solving (6), which is equivalent to the Henderson
system (5).

Finally, as mentioned in [9], given estimate ξ̂k for ξk, we have the following updates
for the maximum likelihood estimation of the variance parameters σ2k, k ∈ {1, . . . , q}:

σ2k ←−
ξ̂k
′
A−1k ξ̂k

N − 1
σ2
k
tr
(
A−1k Ck

) where Ck =
(
U ′Wξ,kU +D−1k

)−1
The algorithm Component f = Xu is still found solving a (3)-type program, adapting
the expression of ψT . Indeed, conditional on the random effects ξk, the working variables
zkξ are assumed normally distributed according to (7). We thus modify the previous

goodness-of-fit measure, taking into account the variance of zkξ conditional on ξk. In case
of grouped data,

ψT (u) =

q∑
k=1

∥∥∥zkξ ∥∥∥2
Wξ,k

cos2Wξ,k

(
zkξ , 〈Xu, T 〉

)
(8)
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Step 1 Computation of the component
Set:

u[t] = arg max
u′Au=1

[φ(u)]s [ψT (u)]1−s where ψT is defined by (8)

f [t] = Xu[t]

Step 2 Henderson systems
For each k ∈ {1, . . . , q}, solve the following system:

f [t]
′
W

[t]
ξ,kf

[t] f [t]
′
W

[t]
ξ,kT f [t]

′
W

[t]
ξ,kU

T ′W
[t]
ξ,kf

[t] T ′W
[t]
ξ,kT T ′W

[t]
ξ,kU

U ′W
[t]
ξ,kf

[t] U ′W
[t]
ξ,kT U ′W

[t]
ξ,kU +D

[t]
k

−1


γkδk
ξk

 =


f [t]
′
W

[t]
ξ,k z

k
ξ
[t]

T ′W
[t]
ξ,k z

k
ξ
[t]

U ′W
[t]
ξ,k z

k
ξ
[t]


Call γ

[t]
k , δ

[t]
k and ξk

[t]
the solutions.

Step 3 Updating variance parameters
For each k ∈ {1, . . . , q}, compute:

σ2k
[t+1]

=
ξk

[t]′
A−1k ξk

[t]

N − 1

σ2
k
[t] tr

(
A−1k C

[t]
k

) and D
[t+1]
k = σ2k

[t+1]
Ak

Step 4 Updating working variables and weighting matrices
For each k ∈ {1, . . . , q}, compute:

ηk
[t]

= f [t]γ
[t]
k + Tδ

[t]
k + Uξk

[t]

µ
[t]
k,i = G−1k

(
ηki

[t]
)
, i = 1, . . . , n

zki
[t+1]

= ηk
[t]

+
(
yki − µ

[t]
k,i

)
gk

(
µ
[t]
k,i

)
, i = 1, . . . , n

W
[t+1]
ξ,k = Diag

(([
gk

(
µ
[t]
k,i

)]2
Var

(
Y k
i | ξk

)[t])−1)
i=1,...,n

Step 1–4 are repeated until stability of u and parameters γk, δk and σ2k is reached.

Algorithm 1: Current iteration of the single component Mixed-SCGLR

3.2 Extracting higher rank components

Let F h =
{
f1, . . . , fh

}
be the set of the first h components. An extra component fh+1

must best complement the existing ones plus T , i.e. T h := F h ∪ T . So fh+1 must be
calculated using T h as additional covariates. Moreover, we must impose that fh+1 be
orthogonal to F h, i.e.:

F h
′
Wfh+1 = 0

Component fh+1 := Xuh+1 is thus obtained solving:{
max [φ(u)]s [ψTh(u)]1−s

subject to: u′Au = 1 and Dh′u = 0
(9)

where ψTh(u) =

q∑
k=1

∥∥∥zkξ ∥∥∥2
Wξ,k

cos2Wξ,k

(
zkξ , 〈Xu, T h〉

)
and Dh = X ′WF h.
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In Appendix, we give an algorithm to maximise, at least locally, any criterion on the
unit sphere: the Projected Iterated Normed Gradient (PING) algorithm. Varying the
initialisation allows us to increase confidence that the maximum reached is global. It
allows us to build components of rank h > 1 by solving programs (9) and also component
of rank h = 1 if we impose T h = T and Dh = 0 in the aforementioned program.

4 Simulation study in the canonical Gaussian case

A simple simulation study is conducted to characterise the relative performances of
Mixed-SCGLR and Ridge- and Lasso-based regularisations in the LMM framework [3, 4].
We focus on the multivariate case, i.e. several y′s, with many redundant explanatory
variables. To do so, two random responses Y =

{
y1, y2

}
are generated, and explanatory

variables X are simulated so as to contain three independent bundles of variables: X1,
X2 and X3. Each explanatory variable is assumed normally distributed with mean 0
and variance 1. The level of redundancy within each bundle is tuned with parameter
τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. To be precise, correlations among explanatory variables whithin
bundle Xj are:

corr(Xj) = τ11′ + (1− τ)I

Besides, bundle X1 (15 variables) models and predicts only y1, bundle X2 (10 variables)
only y2, while bundle X3 (5 variables) is designed to be a bundle of noise. Considering no
additional covariates (T = 0), we thus simulate Y as :{

y1 = Xβ1 + Uξ1 + ε1

y2 = Xβ2 + Uξ2 + ε2
(10)

We consider the case of N = 10 groups and R = 10 units per group. Consequently, the
random-effect design matrix can be written: U = IN ⊗ 1R. All variables whithin each
bundle are assumed to contribute homogeneously to predict Y . Then our choice of the
fixed parameters are:

β1 = ( 0.3, . . . , 0.3︸ ︷︷ ︸
5 times

, 0.4, . . . , 0.4︸ ︷︷ ︸
5 times

, 0.5, . . . , 0.5︸ ︷︷ ︸
5 times

, 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
15 times

)′

β2 = ( 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
15 times

, 0.3, .., 0.3︸ ︷︷ ︸
3 times

, 0.4, .., 0.4︸ ︷︷ ︸
4 times

, 0.5, .., 0.5︸ ︷︷ ︸
3 times

, 0, . . . , 0︸ ︷︷ ︸
5 times

)′

Finally, residual variability and within groups variability are fixed to σ2k = 1. We thus
simulate random effects and noise respectively as: ξk ∼ NN (0, σ2kIN ) and εk ∼ Nn(0, σ2kIn),
where k ∈ {1, 2} and n = NR.

On the whole, M = 500 simulations are conducted for each value of τ , according to

model (10). Simulation m provides two fixed-effects estimations: β̂
(m)
1 and β̂

(m)
2 . Unlike

Mixed-SCGLR, both LMM-Ridge and (G)LMM-Lasso are not designed for multivariate
responses: estimations are computed separately in these cases. Consequently, for each
method, we decide to retain only the one which provides the lower relative error. Their
mean over M simulations (MLRE) is defined as:

MLRE =
1

M

M∑
m=1

min


∥∥∥β̂(m)

1 − β1
∥∥∥2

‖β1‖2
,

∥∥∥β̂(m)
2 − β2

∥∥∥2
‖β2‖2


In Table 1, we summarise the optimal regularisation parameters selected via cross-

validation. Corresponding MLRE’s are presented in Table 2 to which we added the results
provided without regularisation. As expected, in both Ridge and Lasso regularisations,
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the shrinkage parameter value increases with τ . On the other hand, the greater τ , the more
Mixed-SCGLR (with l = 4 as recommended in [8]) focuses on the main structures in X
that contribute to model Y . The average value of s is approximatively 0.5, which means
that there is no significant preference between goodness-of-fit and structural relevance.
Except for τ = 0.1, Mixed-SCGLR provides the most precise fixed effect estimates despite
the sophistication of the dependence structure and the high level of correlation among
explanatory variables. Indeed, if there are no actual bundles in X (τ ' 0), looking for
structures in X may lead Mixed-SCGLR to be slightly less accurate. Conversely, the
stronger the structures (high τ), the more efficient our method.

(G)LMM-Lasso LMM-Ridge Mixed-SC(G)LR
Optimal shrinkage

parameter
Optimal shrinkage

parameter
Optimal number
of components K

Optimal tuning
parameter s

τ = 0.1 63.4 24.1 25 0.53
τ = 0.3 111.2 53.7 5 0.53
τ = 0.5 171.3 73.2 3 0.51
τ = 0.7 220.6 78.2 2 0.51
τ = 0.9 254.9 84.9 2 0.52

Table 1: Optimal regularisation parameter values obtained by cross-validation over 500
simulations

LMM (G)LMM-Lasso LMM-Ridge Mixed-SC(G)LR

τ = 0.1 0.141 0.083 0.090 0.094
τ = 0.3 0.340 0.180 0.124 0.105
τ = 0.5 0.686 0.413 0.150 0.059
τ = 0.7 1.571 0.913 0.189 0.061
τ = 0.9 5.022 2.431 0.261 0.050

Table 2: Mean Lower Relative Errors (MLRE’s) associated with the optimal parameter
values

In order to highlight the power of Mixed-SCGLR for model interpretation, we represent
on Figure 2 the correlation scatterplots obtained for τ = 0.5, l = 4, s = 0.51, and K = 3.
It clearly appears that y1 is explained by the first bundle and y2 by the second. The third
component calculated catches the third bundle, which appears to play no explanatory role.

5 Real data example in the canonical Poisson case

Genus is a dataset built from the “CoForChange” study, which was conducted on n =
2600 developped plots divided into N = 22 forest concessions. It gives the abundance of
q = 94 common tree genera in the tropical moist forest of the Congo-Basin, p = 56 geo-
referenced environmental variables, and r = 2 other covariates which describe geology and
anthropogenic interference. Geo-referenced environmental variables are used to represent:

• 29 physical factors linked to topography, rainfall, or soil moisture,

• 25 photosynthesis activity indicators obtained by remote sensing: EVI (Enhanced
Vegetation Index), NIR (Near InfraRed channel index) and MIR (Mid-InfraRed
channel index)),
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Figure 2: Correlation scatterplots given by Mixed-SCGLR method on the simulated data.
The left hand side and the right hand side plots respectively show component planes (1, 2)
and (1, 3). BothX-part linear predictors related to y1 and y2 are considered supplementary
variables.

• 2 indicators which describe stand of trees height.

Physical factors are many and redundant (monthly rainfalls are highly correlated, for
instance, and related to the geographic location). So are all photosynthesis activity indi-
cators. Therefore, all these variables are put in X. By contrast, as geology and anthro-
pogenic interference are weakly correlated and interesting per se, we put them in the set
T of additional covariates.

It must be noted that the abundances of species given in Genus are count data. For
each random response y1, . . . , yq we thus choose a Poisson regression with log link:

∀k ∈ {1, . . . , q} , yk ∼ P

exp

 K∑
j=1

(
Xuj

)
γj + Tδk + Uξk


Among a series of parameter choices, values l = 4 and s = 0.5 prove to yield components
very close to interpretable variable bundles. We therefore keep these parameter values in
order to find - through a cross-validation procedure - the number of components K which
minimises the Average Normalised Root Mean Square Error (AveNRMSE) defined as:

AveNRMSE =
1

q

q∑
k=1

√√√√ 1

n

n∑
i=1

(
yki − ŷki
ȳk

)2

On Figure 3, we plot the AveNRMSE’s for K ∈ {0, 1, . . . , 25}. As one can see, the best
models are the ones with 12, 14 and 16 components. We retain the most parcimonious
of them, i.e the one with 12 components. Two examples of correlation scatterplots we
obtain are given on Figure 4, in which the X-parts of linear predictors are considered
supplementary variables.

6 Conclusion

Mixed-SCGLR is a powerful trade-off between multivariate GLMM estimation (which
cannot afford many and redundant explanatory variables) and PCA-like methods (which
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Figure 3: AveNRMSE’s as a function of the number of components, obtained by a cross-
validation procedure. The “null model” does not include any explanatory variables in X,
but only additional covariates in T .

take no account of responses in building components). While preserving the qualities of
the plain version of SCGLR, the mixed one performs well on grouped data, and provides
robust predictive models based on interpretable components. Compared to penalty-based
approaches as Ridge or Lasso, the orthogonal components built by Mixed-SCGLR re-
veal the multidimensional explanatory and predictive structures, and greatly facilitate the
interpretation of the model.
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velopped plots across four countries : Central African Republic, Gabon, Cameroon and
Democratic Republic of Congo. The authors thank the members of the CoForTips project
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Figure 4: Two examples of correlations scatterplots on data Genus. The left hand side
plot displays only variables having cosine greater than 0.8 with component plane (1, 2). It
reveal two patterns: a “rain-wind”-pattern driven by the Pluvio’s and Wd’s variables and
a photosynthesis-pattern driven by the Evi’s. On the right hand side, we plot variables
having cosine greater than 0.7 with component plane (2, 3). Component 3 reveals a bundle
driven by variables Altitude, MIR and Pluvio10, which prove important to model and
predict several y’s.

Appendix

The Projected Iterated Normed Gradient (PING) is an extension of the iterated power
algorithm, solving any program which has the form:

max
u′Au=1
D′u=0

h(u) (11)

Note that putting v := A1/2u, g(v) := h(A−1/2v) and C := A−1/2D, program (11) is
strictly equivalent to program (12):

max
v′v=1
C′v=0

g(v) (12)

In our framework, the particular case C = 0 (no extra-orthogonality contrain) allows us
to find the first rank component. Denoting ΠC⊥ := I − (C ′C)−1C ′ and Γ (v) := ∇

v
g(v), a

Lagrange multiplier- based reasoning gives the basic iteration of the PING algorithm:

v[t+1] =
ΠC⊥Γ

(
v[t]
)∥∥ΠC⊥Γ

(
v[t]
)∥∥ (13)

Despite the fact that iteration (13) follows a direction of ascent, it does not guarantee that
g actually increases on every step. Algorithm PING therefore repeats the following steps
until convergence of v is reached:

Step 1 Set: κ[t] =
ΠC⊥Γ

(
v[t]
)∥∥ΠC⊥Γ

(
v[t]
)∥∥

Step 2 A Newton-Raphson unidimensional maximisation procedure is used to find the
maximum of g(v) on the arc

(
v[t], κ[t]

)
and take it as v[t+1].
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