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Introduction

Régularisation des Modèles Linéaires Généralisés

Initialement introduits par Nelder and Wedderburn (1972), les modèles
linéaires généralisés (GLMs pour Generalised Linear Models) sont largement util-
isés dans les problèmes de régression, car ils couvrent de nombreuses dis-
tributions de réponses appartenant à la famille exponentielle — gaussienne,
Bernoulli, Poisson ou multinomiale pour ne citer que quelques exemples.
Cette famille de distributions permet de modéliser de nombreux types de sor-
ties (continues, binaires, multi–catégorielles ou de comptage...), et trouve donc
des applications dans des domaines variés tels que la biologie, l’épidémiologie,
l’écologie, les sciences sociales, l’économie, etc. Par ailleurs, comme la collecte
d’une grande quantité de données est désormais la norme, le cadre de modéli-
sation qui nous anime est celui d’un très grand nombre de variables explica-
tives avec un niveau de redondance possiblement élevé, incluant le cas de la
grande dimension (plus de variables explicatives que d’individus). Ces redon-
dances conduisent à des sur–ajustements, et même à des singularités dans le
processus d’estimation, ce qui entraîne souvent des prédicteurs linéaires insta-
bles voire non identifiés. Pour faire face à ces problèmes, des techniques de
régularisation ont été mises au point. Elles consistent à introduire des infor-
mations supplémentaires dans le processus d’estimation et permettent ainsi de
résoudre un problème mal posé ou d’éviter un sur–ajustement.

Il existe essentiellement deux types de méthodes de régularisation : les
méthodes de régularisation par pénalisation et celles fondées sur la construc-
tion de composantes.
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Méthodes de régularisation par pénalisation. Ces méthodes maximisent la
vraisemblance pénalisée par une certaine norme du vecteur des coefficients de
régression. Basée sur la norme L2, la régression ridge introduite par Hoerl and
Kennard (1970a,b) est efficace lorsqu’un problème mal conditionné est diag-
nostiqué, mais que toutes les variables doivent être conservées dans le modèle.
D’un autre côté, la régression LASSO (Tibshirani, 1996) introduit la norme L1,
et est donc particulièrement adaptée lorsque le “vrai” vecteur des coefficients
de régression est creux (i.e. contenant un grand nombre de zéros). Cette méth-
ode est donc principalement utilisée à des fins de sélection de variables. Mal-
heureusement, le LASSO ne parvient pas à faire de sélections groupées et son
efficacité n’est pas assurée dans les cas de grande dimension. Pour surmonter
ces limitations, Zou and Hastie (2005) ont proposé l’elastic net qui, en combi-
nant les normes L2 et L1, tente de tirer profit des meilleures caractéristiques
des méthodes ridge et LASSO. Initialement développées pour le cas gaussien
(ou plus largement pour tous les cas où la mise en oeuvre des moindres carrés
pénalisés est appropriée), ces méthodes ont ensuite été étendues aux GLMs
par Friedman et al. (2010).

Méthodes de régularisation par construction de composantes. Le deux-
ième type de méthodes consiste à construire des prédicteurs linéaires à par-
tir de quelques composantes explicatives (i.e. des combinaisons linéaires des
variables explicatives originales qui synthétisent au mieux la partie utile de
l’information qu’elles contiennent). Le principal avantage des méthodes de
régularisation par construction de composantes est qu’elles permettent de fa-
ciliter l’interprétation du modèle au travers de la décomposition du prédicteur
linéaire sur des directions interprétables. Introduite par Jolliffe (1982) dans le
cadre de la régression ordinaire, la première méthode de régression sur com-
posantes est la régression sur composantes principales (PCR pour Principal
Component Regression), où la réponse est régressée sur les composantes qui
capturent la variabilité maximale dans le sous–espace des variables explica-
tives. Malheureusement, la PCR ne tient pas compte de la réponse lors de
la construction des composantes. Une méthode alternative a ensuite été pro-
posée par Wold (1966) et Wold et al. (1983) — la régression des moindres carrés
partiels (PLSR pour Partial Least Squares Regression) — dans laquelle les com-
posantes sont optimisées afin de maximiser la covariance empirique avec la
réponse. Le premier travail traitant de la régularisation d’un GLM par con-
struction de composantes a été celui de Marx (1996), qui a introduit le mé-
canisme PLS dans l’algorithme IRLS (pour Iteratively Reweighted Least Squares)
d’estimation d’un GLM univarié. Dans son sillage et pour des réponses multi-
variées, Bry et al. (2013) ont développé une méthodologie appelée “régression
linéaire généralisée sur composantes supervisées” (SCGLR pour Supervised
Component–based Generalised Linear Regression), plus tard étendue et affinée
par Bry et al. (2014, 2016, 2018). En tant qu’approche de type PLS, les com-
posantes construites dans SCGLR s’appuient sur les structures fortes au sein
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des variables explicatives, et doivent également prédire au mieux les réponses.
Mais contrairement à PLS, les composantes SCGLR sont construites à l’aide
d’un critère beaucoup plus flexible, permettant entre autre de spécifier le type
de structures avec lesquelles les composantes doivent s’aligner dans le sous–
espace explicatif (des faisceaux particuliers de variables, les composantes prin-
cipales, etc).

Les méthodes hybrides. Quelques méthodologies combinant les techniques
de régularisation par pénalisation et par construction de composantes ont
également été développées, afin de tenter de tirer conjointement profit des
avantages respectifs des deux types de régularisation. À ce titre, Fort and
Lambert-Lacroix (2005) s’intéressent à un problème de classification dans un
contexte de grande dimension (p � n). La méthode qu’ils proposent, com-
binant séquentiellement régression logistique pénalisée en norme L2 (Eilers
et al., 2001) et construction de composantes PLS , permet de stabiliser le pro-
cessus d’estimation. Notons cependant que comme la combinaison est séquen-
tielle plutôt qu’itérative, cette méthode ne semble pas mettre correctement à
jour les poids d’estimation. Davantage intéressés par des problèmes de sélec-
tion de variables, Durif et al. (2017) ont étendu cette approche en construisant
des composantes PLS parcimonieuses (Chun and Keleş, 2010) en lieu et place
des composantes PLS originales.

Notre travail se concentre sur des situations où les variables explicatives
sont nombreuses et considérées comme des proxys de dimensions latentes
qui doivent être retrouvées et interprétées. C’est pourquoi nous nous intéres-
sons principalement aux méthodes basées sur la construction de composantes.
Cependant, des exemples élémentaires de régression mettent en défaut le pou-
voir interprétatif des composantes principales et PLS. Considérons par exem-
ple le modèle linéaire gaussien

y∼Nn (µ = Xβ, Σ = In) ,

où la matrice de design X contient 20 variables explicatives divisées en deux
parties :

I un faisceau de 10 variables corrélées dites “de nuisance”, ne jouant donc
aucun rôle explicatif

X1 =
[
x1 | . . . . . . . . . . . . . . . . . . . . . | x10

]
,

I et deux faisceaux contenant chacun 5 variables corrélées, qui prédisent
conjointement la réponse y[

X2 | X3
]

=
[
x11 | . . . | x15 | x16 | . . . | x20

]
.
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La Figure 1.1 montre le premier plan factoriel obtenu par la PCR et la
PLSR. Pour la PCR, comme le faisceauX1 est celui d’inertie maximale, il appa-
raît le long de la première composante principale. Les deux faisceaux prédictifs
X2 etX3 ne sont que partiellement capturés par la deuxième composante prin-
cipale. Le premier plan factoriel obtenu par la PCR ne fournit donc que très
peu d’informations sur la réponse y. En revanche, la première composante PLS
combine les deux faisceaux prédictifs en un seul, et la deuxième composante
PLS s’aligne avec le faisceau de nuisance. Ainsi, bien que la régression PLS
réussisse à détecter les variables pertinentes pour la modélisation de y, elle ne
détecte pas la présence de deux faisceaux prédictifs distincts, ce qui représente
un réel problème pour l’interprétation du modèle.
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Figure 1.1 – Échec du pouvoir interprétatif des régressions sur composantes princi-
pales et PLS. Nous donnons un exemple du premier plan factoriel issu de la régression sur
composantes principales (figure de gauche) et de la régression sur composantes PLS (figure
de droite). Les flèches noires représentent la projection orthogonale des variables explicatives
sur le plan factoriel (1, 2), tandis que la flèche rouge représente la projection orthogonale de la
réponse y. Le pourcentage d’inertie capturée par chaque composante est donné entre paren-
thèses.

La Figure 1.2, quant à elle, montre le premier plan factoriel issu de la ré-
gression sur composantes supervisées, obtenu par la méthode SCGLR dans le
cas gaussien. Le package R SCGLR, qui construit les composantes supervisées
et génère les plans factoriels, est disponible à l’adresse https://scnext.
github.io/SCGLR/. Contrairement aux régressions sur composantes prin-
cipales et PLS, les deux premières composantes supervisées s’alignent sur les
deux faisceaux prédictifsX2 etX3 respectivement.
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Figure 1.2 – Pouvoir interprétatif de la régression sur composantes supervisées. En
utilisant les mêmes données, nous représentons le plan factoriel (1, 2) produit par la régression
sur composantes supervisées. Pour faciliter l’interprétation du modèle, nous avons caché les
variables explicatives ayant un cosinus avec le plan factoriel inférieur à 0.4.

Tout en préservant les qualités prédictives de la régression PLS, SCGLR
améliore considérablement l’interprétation des modèles. C’est la raison pour
laquelle notre travail s’appuiera essentiellement sur SCGLR, plus souple et en-
globant les régressions sur composantes principales et PLS. Mais SCGLR, dans
sa version originale, présente quelques limitations. Cette thèse vise donc à sur-
monter certaines d’entre elles.

(i) Dans la version initiale de SCGLR (Bry et al., 2013), les auteurs ont sup-
posé que les observations étaient indépendantes, ce qui empêche de con-
sidérer des structures de dépendance complexes. Dans une perspec-
tive de modélisation de données groupées, nous avons choisi d’assouplir
cette hypothèse en introduisant dans le modèle un effet aléatoire spéci-
fique au groupe. Cette amélioration étend SCGLR aux modèles linéaires
généralisés mixtes (GLMMs pour Generalised Linear Mixed Models) multi-
variés.

(ii) Dans de nombreux domaines (comme l’épidémiologie par exemple),
les problèmes rencontrés par les praticiens se situent à l’interface en-
tre régression impliquant des données de panel la modélisation avec un
GLMM basé sur un grand nombre de variables explicatives redondantes.
Le besoin de régularisation doit alors tenir compte des dépendances in-
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duites par des mesures répétées sur chaque individu au cours du temps.
Une nouvelle extension de SCGLR a donc été proposée : elle comprend
à la fois des effets aléatoires spécifiques aux individus et spécifiques au
temps, ces derniers ayant une structure autocorrélée.

(iii) En sciences sociales ou en sciences psychiatriques par exemple, la plupart
des études exigent que certaines variables explicatives soient conservées
en tant que telles dans le modèle (par exemple le sexe, l’âge, le niveau
de scolarité, etc.). En effet, il arrive fréquemment que certaines variables
présentent un intérêt particulier pour le praticien — qui souhaite donc es-
timer leurs effets marginaux avec précision — voire même que certaines
variables soient connues pour être des facteurs de confusion. La plu-
part des problèmes de régression que nous considérons incluent donc
deux catégories de variables explicatives. La première catégorie contient
des variables abondantes et fortement corrélées nécessitant une réduc-
tion dimensionnelle, tandis que la deuxième contient quelques variables
faiblement corrélées qui sont d’un intérêt particulier pour le praticien.
Ces dernières variables doivent apparaître comme telles dans le modèle,
et non par l’intermédiaire des composantes.

Régularisation par construction de composantes des
GLMMs multivariés avec effets aléatoires spéci-
fiques à l’individu

Le but de ce travail est de modéliser une réponse — ou un ensemble
de réponses avec des distributions variées appartenant à la famille exponen-
tielle — dans un contexte où les observations sont groupées. Comme suggéré
plus haut, la modélisation de dépendances entre observations induit souvent
l’utilisation d’effets aléatoires, d’où la nécessité de modéliser nos réponses
selon des GLMMs. Or, en toute généralité, l’estimation des paramètres d’un
GLMM par maximum de vraisemblance est difficile car la fonction de vraisem-
blance, s’exprimant comme une intégrale par rapport aux effets aléatoires,
n’admet pas d’expression analytique. Plusieurs méthodes ont été proposées
pour contourner ce problème. Les premières méthodes d’approximation de
cette vraisemblance, de nature numériques, ont été mises au point pour la
première fois au milieu des années 1980 (voir par exemple Anderson and
Aitkin, 1985; Pinheiro and Bates, 1995; Breslow and Clayton, 1993; Shun and
McCullagh, 1995). Des méthodes d’approximation stochastiques ont ensuite
été développées dès le milieu des années 1990 (par exemple Zeger and Karim,
1991; Clayton, 1996; McCulloch, 1997; Knudson, 2016). Il existe également une
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troisième procédure d’estimation, basée sur une approximation linéaire du
modèle lui–même. Introduite par Schall (1991), la méthode implique un pro-
cessus itératif alternant entre la linéarisation du modèle conditionnellement
aux effets aléatoires, et l’estimation des paramètres au moyen de méthodes
utilisées pour les modèles linéaires mixtes (LMMs pour Linear Mixed Models).
Outre sa facilité de mise en œuvre et sa rapidité, cette méthode nous fournit
un cadre intéressant pour développer notre procédure de régularisation.

Les GLMMs peuvent être vus comme un prolongement important des
GLMs pour des observations groupées. Toutefois, leur utilisation est souvent
limitée à quelques variables explicatives seulement, principalement parce que
la présence de nombreux prédicteurs potentiellement redondants augmente
le temps de calcul et produit des estimations instables. Pour surmonter cette
limitation, le besoin de réduction dimensionnelle et/ou de régularisation doit
tenir compte de la présence d’effets aléatoires dans le modèle. Contraire-
ment aux GLMs, relativement peu d’articles traitent de techniques de régu-
larisation de GLMMs. Pour des réponses gaussiennes, Eliot et al. (2011) ont
d’abord proposé d’étendre la régression ridge aux LMMs. Puis plus récem-
ment, dans une optique de sélection de variables, Schelldorfer et al. (2014);
Groll and Tutz (2014) ont développé une méthode d’estimation d’un GLMM,
qui fait intervenir la norme L1 des coefficients de régression. Il s’agit donc
ici d’une extension du LASSO pour GLMMs. Cependant, à notre connais-
sance, aucune méthode de régularisation par construction de composantes n’a
jusqu’à alors été développée pour les GLMMs. Afin de combler ce vide, nous
proposons d’étendre la méthode de Schall en y introduisant la construction
de composantes supervisées à chaque itération. Comme dans la Figure 1.2, les
composantes supervisées que nous proposons de construire sont conçues pour
s’aligner avec les directions les plus prédictives et les plus interprétables dans
le sous–espace explicatif.

Le cadre que nous considérons est celui d’un GLMM multivarié avec
plusieurs vecteurs réponses Y =

[
y1 | . . . |yq

]
, à expliquer par deux caté-

gories de variables explicatives. La première catégorie est composée de
quelques variables faiblement corrélées A =

[
a1 | . . . |ar

]
dont les effets

marginaux doivent être quantifiés avec précision : ces variables doivent donc
apparaître dans le modèle sans l’intermédiaire d’une composante. La deux-
ième catégorie est composée d’un grand nombre de variables corrélées X =[
x1 | . . . |xp

]
qui peuvent contenir plusieurs dimensions K < p structurelle-

ment pertinentes pour modéliser et prédire Y . Les n observations ne sont plus
supposées indépendantes mais forment N groupes distincts (G1, . . . , GN dans
la Figure 1.3) dans lesquels les observations sont a priori dépendantes. C’est
pourquoi, pour chaque réponse yk, un effet aléatoire ξk à N niveaux est util-
isé pour modéliser la dépendance des observations dans chaque groupe. Le
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prédicteur linéaire associé à la réponse yk s’écrit donc

ηξk =
K∑
h=1

(Xuh) γk,h +Aδk +Uξk,

où U est la matrice de design des effets aléatoires. Notez que γk,h est le
paramètre de régression associé à la composante fh = Xuh pour la kème

réponse, et δk est le paramètre de régression associé aux variables explica-
tives additionnelles A. Nous insistons ici sur le fait que les composantes
{Xu1, . . . ,XuK} sont communes à l’ensemble des réponses yk, car elles sont
précisément conçues pour capturer une dépendance structurelle entre les
vecteurs réponses. Les composantes représentent donc les directions les plus
pertinentes dans X pour l’ensemble des réponses, le paramètre γk,h reflétant la
pertinence de la hème direction pour la kème réponse.

...
...

... · · ·
... · · ·

...

...
...

... · · ·
...

A

X

Y

a1 ar

x1 xp

y1 yq

ξ1 ξq












n

n

G1
—
G2
—
...
—
GN

N

n

Figure 1.3 – Représentation de quelques vecteurs et matrices du modèle avec effets
aléatoires spécifiques à l’individu.

Supposons que les premières h − 1 composantes sont construites et con-
caténées dans la matrice Fh−1 =

[
f1 | . . . |fh−1

]
. Pour calculer la hème com-

posante fh = Xuh, notre méthode appelée “mixed–SCGLR” maximise un
compromis entre une mesure de pertinence structurelle φ et une mesure de
qualité d’ajustement ψ. Le programme à résoudre est alors

max [φ(u)]s × [ψ(u)]1−s , s ∈ [0, 1] ,
sous les contraintes ‖u‖ = 1 et Xu ⊥ Fh−1.
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φ est un critère de pertinence structurelle qui permet de spécifier le type de
structures explicatives avec lesquelles les composantes doivent s’aligner, ainsi
que la “résolution” à considérer pour la construction des composantes. Dans
notre contexte, ψ est une mesure de qualité d’ajustement du modèle linéarisé
qui apparait à chaque itération de l’algorithme de Schall.

Régularisation des GLMMs avec un effet aléatoire
autorégressif spécifique au temps

Jusqu’à présent, nous nous sommes concentrés sur les GLMMs multivar-
iées en considérant uniquement des effets aléatoires spécifiques aux individus.
Dans cette partie, nous nous intéressons au développement de méthodes de
régularisation dans le contexte spécifique des données de panel (impliquant
des mesures répétées sur plusieurs individus aux mêmes dates).

Eliot et al. (2011) s’intéressent à la modélisation d’une réponse d’intérêt
mesurée de façon répétée sur plusieurs individus au cours du temps, à des
intervalles de temps potentiellement inégalement espacés. Afin de faire face
aux corrélations potentiellement élevées au sein des variables explicatives, les
auteurs proposent d’adapter la régression ridge à ce type de données répétées.
Basé sur une log–vraisemblance complétée pénalisée par norme L2 des coef-
ficients de régression, l’algorithme Espérance–Maximisation (EM) qu’ils pro-
posent permet un réglage adaptatif du paramètre de rétrécissement par vali-
dation croisée généralisée à chaque itération. Comme leur papier se focalise
sur des données longitudinales, le modèle inclut un effet aléatoire propre à
l’individu, mais n’inclut pas un effet aléatoire propre à la date et partagé par
tous les individus.

Par ailleurs, on suppose souvent que les effets aléatoires propres à
l’individu sont normalement distribués avec des niveaux indépendants.
Toutefois, pour les données de panel, l’autocorrélation de l’effet aléatoire spéci-
fique au temps semble naturelle. À ce titre, Karlsson and Skoglund (2004) con-
sidèrent à la fois des effets aléatoires propre à l’individu, et des effets aléatoires
propre au temps munis d’une structure d’autocorréation. Ces derniers sont
considérés comme des phénomènes latents (non pris en compte par les vari-
ables explicatives) affectant tous les individus et qui persistent dans le temps.
Toutefois, les auteurs ne considèrent aucune situation où il est nécessaire de
régulariser le modèle.
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Figure 1.4 – Représentation de quelques vecteurs et matrices du modèle avec effets
aléatoires spécifiques aux individus et au temps.

Le défi a donc consisté à développer des méthodes de régularisation dans
un contexte où les variables explicatives sont redondantes, pour un modèle
avec un effet aléatoire propre à l’individu et un effet aléatoire autocorrélé spéci-
fique au temps. Pour simplifier, nous considérons maintenant un seul vecteur
réponse y qui concatène les sorties mesurés sur q1 individus aux mêmes q2
dates, et nous omettons les variables explicatives additionnelles. Par contre,
deux effets aléatoires sont introduits dans notre modèle (voir la Figure 1.4) :

I ξ1 est l’effet aléatoire (à q1 niveaux) propre aux individus, qui relie toutes
les observations d’un individu à la même réalisation de l’effet aléatoire.
Nous supposons ξ1 ∼ Nq1 (0, σ2

1A1), où σ2
1 est la composante individu-

elle de la variance etA1 une matrice connue.

I ξ2 est l’effet aléatoire (à q2 niveaux) spécifique au temps, qui relie toutes
les observations d’une date donnée t à la même réalisation de l’effet
aléatoire. Il modélise un phénomène latent possédant une certaine in-
ertie temporelle, et affectant tous les individus. Nous supposons ξ2 ∼
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Nq2 (0, σ2
2A2(ρ)), où σ2

2 est la composante temporelle de la variance et

A2(ρ) =
(
ρ|i−j|

1− ρ2

)
16i,j6q2

. Le paramètre ρ reflète la structure de corréla-

tion autorégressive d’ordre 1 de ξ2.

Tout d’abord, nous avons jugé nécessaire d’adapter la régression ridge
proposée par Eliot et al. (2011) aux modèles comportant les deux types d’effets
aléatoires décrits plus haut. En notant β le paramètre des effets fixes de di-
mension p, ξ := (ξT

1, ξ
T
2)T et U la matrice de design associée, le modèle que

nous considérons s’écrit
y = Xβ +Uξ + ε,

où ε est le vecteur des erreurs gaussiennes. Dans le sillage d’Eliot, nous sug-
gérons d’estimer les paramètres θ = (β, σ2

1, σ
2
2, σ

2
2, ρ) par un algorithme EM

basé sur la log–vraisemblance pénalisée par la norme L2 des coefficients de ré-
gression. La log–vraisemblance complétée pénalisée qui en résulte, `c

ridge, est
donc

`c
ridge (θ;y, ξ) = `c (θ;y, ξ)− λ

2 ‖β‖
2
2 ,

où `c désigne la log–vraisemblance complétée et λ > 0 le paramètre de rétré-
cissement usuel.

Le principal inconvénient de cette méthode est qu’elle pénalise les coef-
ficients élevés parce qu’elle considère que les corrélations élevées entre les
variables explicatives sont une pure nuisance, en ce sens qu’elles favorisent
la confusion des effets. C’est la raison pour laquelle nous proposons ensuite
une alternative qui mêle algorithme EM et construction de composantes su-
pervisées (SCEM pour Supervised Component–based EM) : au lieu de soustraire
un terme de pénalité à la log–vraisemblance complétée, nous proposons plutôt
d’ajouter un terme bonus qui favorise l’alignement des composantes avec les
directions les plus interprétables dans le sous–espace explicatif. Lorsqu’une
seule composante est construite, le modèle que nous considérons est le suiv-
ant :

y = (Xu) γ +Uξ + ε,

où u est un vecteur de pondération des variables explicatives et γ le paramètre
de régression associé à la composante f = Xu. La log–vraisemblance com-
plétée régularisée qui en résulte prend la forme d’un compromis entre `c et
une mesure de pertinence structurelle φ. Elle s’écrit plus précisément

`c
SC (θ;y, ξ) = (1− s) `c (θ;y, ξ) + s log [φ (u)] ,

où θ = (u, γ, σ2
1, σ

2
2, ρ) et s ∈ [0, 1]. Notez que SCEM est également conçue pour

la recherche de plusieurs composantes orthogonales.
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Enfin, des extensions des deux méthodes précédentes pour les GLMMs
ont également été développées. Comme dans l’algorithme de Schall, nous pro-
posons une méthode qui alterne entre linéarisation du modèle et estimation
des paramètres. Mais pour tenir compte à la fois du niveau élevé de redon-
dance dans X et de la structure autocorrélée de l’effet aléatoire spécifique au
temps, nous suggérons de remplacer l’étape d’estimation usuelle (impliquant
des systèmes de Henderson particuliers) par un algorithme EM incluant une
pénalité en norme L2 ou la construction de composantes supervisées.

Plan de la thèse

En résumé, cette thèse porte sur la régularisation des GLMMs. Les
Chapitres 3 et 4 sont de brefs chapitres d’état de l’art : le Chapitre 3
présente les méthodes de régularisation les plus couramment utilisées pour
l’estimation d’un GLM, tandis que le Chapitre 4 se concentre sur les méth-
odes d’estimation usuelles d’un GLMM (sans régularisation). Les chapitres
suivants sont consacrés à nos propres contributions aux méthodes de régu-
larisation des GLMMs. Le Chapitre 5 étend la méthode SCGLR aux données
groupées dans le contexte des GLMMs multivariés. Nous proposons d’adapter
l’algorithme de Schall à des prédicteurs linéaires basés sur des composantes
particulières, qui sont construites en tenant compte à la fois de la structure des
variables explicatives et de leur capacité à prédire les réponses. Notre méth-
ode, appelée “mixed–SCGLR”, est testée sur des données simulées et réelles,
et est comparée aux méthodes de régularisation classiques telles que ridge et
LASSO. Le Chapitre 6 s’intéresse d’abord aux données de panel gaussiennes,
et propose des modèles incluant à la fois des effets aléatoires propres aux in-
dividus et des effets aléatoires spécifiques au temps. Dans ce contexte, nous
avons d’abord développé un algorithme ridge–EM, puis un algorithme EM
basé sur la construction de composantes supervisées qui améliore grandement
l’interprétation des modèles. Une extension de ces algorithmes est également
proposée dans le cas non gaussien. Enfin, le Chapitre 7 donne un aperçu des
travaux en cours et des perspectives.
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Introduction (for English speakers)

Regularising Generalised Linear Models

Initially introduced by Nelder and Wedderburn (1972), Generalised Lin-
ear Models (GLMs) are widely used in regression frameworks, since they cover
numerous response distributions belonging to the exponential family — for
instance Gaussian, Bernoulli, Poisson or multinomial. This family of distribu-
tions allows modelling many types of outcomes (continuous, binary, counts,
multi-categorical...), and thus addresses a very large scope of applications in
many areas: biology, epidemiology, ecology, social sciences, economy, etc. Be-
sides, since it is nowadays increasingly possible to collect large amounts of
data, our modelling framework is that of too many explanatory variables with
a possibly high degree of redundancy, up to and including high–dimensional
data. These redundancies lead to overfitting or even singularities in the esti-
mation process, coupled with unstable if not unidentified linear predictors. To
face this problem, regularisation techniques have been developed, introducing
additional information in the estimation process in order to solve an ill–posed
problem or to prevent overfitting.

Two types of regularisation methods can be distinguished: penalty–based
methods and component–based ones.

Penalty–based methods. These methods maximise the likelihood penalised
by some norm of the coefficient vector. Based on the L2–norm, the ridge re-
gression introduced by Hoerl and Kennard (1970a,b) is useful when an ill–
conditioned problem is diagnosed, while all variables must be kept in the
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model. On the contrary, the LASSO regression (Tibshirani, 1996) involves the
L1–norm that inherently induces the sparsity of the solution. This method
is therefore mainly used for variable selection purposes. Unfortunately, the
LASSO fails to do grouped selection and its effective functioning is not en-
sured in the high–dimensional case. To overcome these limitations, Zou and
Hastie (2005) proposed the elastic net which, combining theL1– andL2–norms,
attempts to take advantage of the best features of both ridge and LASSO meth-
ods. Initially developed for the Gaussian case, these methods were generalised
to the GLMs by Friedman et al. (2010).

Component–based methods. The second type of methods builds linear pre-
dictors from a few explanatory components, i.e. linear combinations of the
original explanatory variables which best synthesise the useful part of the in-
formation they contain. The main advantage of component–based regulari-
sation methods is that they allow an easy model interpretation through the
decomposition of the linear predictor on interpretable directions. Introduced
by Jolliffe (1982) in the ordinary regression framework, the first component–
based regression method is the Principal Component Regression (PCR), where
the response is regressed on the components that capture the maximal variabil-
ity in the explanatory subspace. Unfortunately, the PCR ignores the response
while building components. An alternative method was then proposed by
Wold (1966); Wold et al. (1983) — the Partial Least Squares (PLS) regression
— in which components are optimised so as to maximise the empirical co-
variance with the response. The first work dealing with component–based
regularisation of a GLM was that of Marx (1996), who introduced the PLS
mechanism into the Iterative Re–weighted Least Squares algorithm of a uni-
variate GLM. In his wake and for multiple–response settings, Bry et al. (2013)
have developed a methodology based on supervised components, named Su-
pervised Component–based Generalised Linear Regression (SCGLR), later ex-
tended and refined in Bry et al. (2014, 2016, 2018). As a PLS–type approach, the
construction of components in SCGLR is guided both by the correlation struc-
ture of the explanatory variables and by the prediction quality of the responses.
Nevertheless, unlike PLS, SCGLR involves a general and flexible criterion al-
lowing to specify the type of structure with which components should align in
the explanatory subspace (e.g. variable bundles, principal components, etc).

Hybrid methods. Some methodologies combining penalisation techniques
and component–based regularisation have also been developed, in order to
benefit from the advantages of both frameworks. Fort and Lambert-Lacroix
(2005) address for instance the question of classification in a high–dimensional
setting (p � n). The method they proposed, combining PLS and ridge pe-
nalised logistic regression sequentially (Eilers et al., 2001), allows to stabilise
the estimation process. But because the combination is sequential instead of
iterative, this method does not deal with estimation weights properly, never
updating them. More focused on variable–selection issues, Durif et al. (2017)
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have extended this approach by using a sparse PLS (Chun and Keleş, 2010)
instead of PLS.

Our work focuses on situations where the explanatory variables are many
and considered as proxies to latent dimensions which must be found and inter-
preted. We will therefore mainly consider component–based methods. How-
ever, there are very simple regression frameworks where the model interpreta-
tion provided by classical component–based methods (namely PCR and PLSR)
remains difficult. Consider for example the following Gaussian linear model

y∼Nn (µ = Xβ, Σ = In) ,

where the design matrixX contains 20 explanatory variables divided into two
parts:

I a nuisance variable–bundle of 10 correlated variables without explana-
tory role,

X1 =
[
x1 | . . . . . . . . . . . . . . . . . . . . . | x10

]
,

I and two smaller bundles of 5 correlated variables each that together pre-
dict y, [

X2 | X3
]

=
[
x11 | . . . | x15 | x16 | . . . | x20

]
.

Figure 2.1 shows the first component plane obtained by PCA and PLS. For
PCA, as bundleX1 is the one with maximum inertia, it appears along the first
principal component. The two predictive bundles X2 and X3 are only par-
tially captured by the second principal component. The first component plane
obtained by PCA thus provides very little information on response y. By con-
trast, the first PLS component combines the two predictive bundles into a sin-
gle one, and the second component aligns with the nuisance bundle. Although
the PLS regression is successful in detecting variables relevant for modelling y,
not detecting the presence of two distinct predictive bundles is a real problem
for model interpretation.

By contrast, Figure 2.2 shows the first component plane obtained by Su-
pervised Component regression, which is what SCGLR boils down to in the
Gaussian case. The R package SCGLR, which calculates the components
and generates the explanatory component planes, is available on https:
//scnext.github.io/SCGLR/. Unlike PCA and PLS regressions, the first
two supervised components align with the predictive variable–bundles X2
andX3 respectively.
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Figure 2.1 – Failure of the interpretative power of PC and PLS regressions. We give an
example of the first two–component planes given by the Principal Component Regression (left)
and the Partial Least Squares Regression (right). The black arrows represent the orthogonal
projection of the explanatory variables on component plane (1, 2), and the red one represents
the orthogonal projection of y. The percentage of inertia captured by each component is given
in parentheses.
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Figure 2.2 – Interpretative power of the SC regression. Using the same data, we present
the component plane (1, 2) issued from the Supervised Component Regression. For an easier
model interpretation, the explanatory variables having a cosine below 0.4 with the component
plane are hidden.
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While preserving the predictive qualities of PLS regression, SCGLR sig-
nificantly improves model interpretation. That is why our work stems from
SCGLR, which is more flexible and includes the previous two methods. Now,
SCGLR, in its original version, does have limitations, and this thesis aims at
overcoming some of them.

(i) In the initial version of SCGLR (Bry et al., 2013), the authors assumed
that the observations are independent, which prevents considering com-
plex dependence structures. In a perspective of grouped data (or clus-
tered data) modelling, we have chosen to relax this hypothesis by intro-
ducing a group–specific random effect into the model. This improve-
ment extends SCGLR to multivariate Generalised Linear Mixed Models
(GLMMs).

(ii) In many fields (such as epidemiology for instance), the problems encoun-
tered by practitioners are at the interface between regression with panel
data and modelling with a GLMM based on a large number of redundant
explanatory variables. The need for regularisation has to accommodate
the dependencies induced by repeatedly measuring an outcome on each
individual over time. A new extension of SCGLR has therefore been pro-
posed: it includes both individual– and time–specific random effects, the
latter having an autocorrelated structure.

(iii) In Social Sciences or Psychiatric Sciences for instance, most studies re-
quire that some explanatory variables be kept as such in the model (e.g.
gender, age, level of education, etc) because they are assumed to be inter-
esting per se or because they are known to be confounding factors. Most
of the regression frameworks we consider will therefore include two cat-
egories of explanatory variables. The first category consists of abundant
and highly correlated variables requiring dimension–reduction. The sec-
ond category consists of few weakly correlated variables selected so as to
preclude instability of their estimated coefficients. These variables must
appear as such in the model, without being mediated by components.

Component–based regularisation of multivariate
GLMMs with individual–specific random effects

In the present work, we aim at modelling a response — or a set of re-
sponses with probability distributions in the exponential family — in the
framework of grouped (or clustered) data. As suggested above, the use of ran-
dom effects is widespread in this context, hence the need to consider GLMMs.
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Now, for the most general distribution assumptions in such models, parame-
ter estimation faces the intractability of the likelihood expressed as an integral
with respect to the random effects. Several methods have been proposed to
tackle this issue. Numerical approximation methods of this likelihood were
first developed in the mid–1980s (see, for instance Anderson and Aitkin, 1985;
Pinheiro and Bates, 1995; Breslow and Clayton, 1993; Shun and McCullagh,
1995), followed by stochastic approximation methods since the mid–1990s (for
example Zeger and Karim, 1991; Clayton, 1996; McCulloch, 1997; Knudson,
2016). A third type of estimation procedure is actually available, based on
a linear approximation of the model itself. Introduced by Schall (1991), the
method involves an iterative process alternating the linearisation of the model
conditional on the random effects, and the estimation of the parameters using
adapted linear mixed models methods. Besides its ease of implementation and
computing speed, this method provides us with an interesting framework to
develop our regularisation procedure.

GLMMs are an important extension of GLMs for clustered observations.
However, their use is often restricted to few explanatory variables, mainly be-
cause the presence of many potentially highly correlated predictors increases
the computational costs and yields unstable estimates. To overcome this limi-
tation, the need for dimension–reduction and/or regularisation has to accom-
modate the presence of random effects in the model. Unlike with GLMs, rela-
tively few articles deal with regularisation techniques for GLMMs. For Gaus-
sian responses, Eliot et al. (2011) first proposed to extend the ridge regression
to Linear Mixed Models (LMMs). Then more recently, and with a view towards
variable selection, Schelldorfer et al. (2014); Groll and Tutz (2014) proposed an
L1–penalised algorithm for fitting a high–dimensional GLMM, by combining
Laplace approximation and cyclic coordinate gradient descent. However, to
our knowledge, no component–based regularisation method is available for
GLMMs. In order to fill this gap, we propose to combine Schall’s iterative
model linearisation with a component–based regularisation at each step. As
in Figure 2.2, the supervised components we propose to build are intended to
align with the most predictive and interpretable directions in the explanatory
space.

The framework we consider is that of a multivariate GLMM with multiple
response–vectors Y =

[
y1 | . . . | yq

]
to be explained by two categories of

explanatory variables. The first category consists of few weakly correlated
variables A =

[
a1 | . . . | ar

]
whose marginal effects need to be precisely

quantified: they have therefore to appear in the model without the mediation
of a component. The second category consists of abundant correlated variables
X =

[
x1 | . . . | xp

]
that may contain several unknown structurally relevant

dimensions K < p important to model and predict Y . The n observations
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are no longer assumed independent in that they form N groups (G1, . . . , GN

in Figure 2.3) within which the observations are a priori dependent. That is
why for each response yk, a N–level random effect ξk is used to model the
dependence of observations within each group. In this context, the associated
component–based linear predictor we consider writes

ηξk =
K∑
h=1

(Xuh) γk,h +Aδk +Uξk,

where U is the random–effect design matrix. Note that γk,h is the regression
parameter associated with component fh = Xuh for the k–th response, and δk
is the regression parameter associated with additional explanatory variables
A. We would like to emphasise that the components {Xu1, . . . ,XuK} are
common to all the yk’s as they are designed to capture a structural dependence
between them. The components thus represent the most relevant directions
in X for all responses. Parameter γk,h then reflects the relevance of the h–th
direction specific to the k–th response.

...
...

... · · ·
... · · ·

...

...
...

... · · ·
...

A

X

Y

a1 ar

x1 xp

y1 yq

ξ1 ξq












n

n

G1
—
G2
—
...
—
GN

N

n

Figure 2.3 – Some vectors and matrices of the model with individual–specific ran-
dom effects.

Suppose the first h − 1 components are built and concatenated into ma-
trix Fh−1 =

[
f1 | . . . | fh−1

]
. In order to compute the h–th component,

namely fh = Xuh, our method, named “mixed–SCGLR”, attempts a trade–off
between a Structural Relevance (SR) measure, φ, and a Goodness–of–Fit (GoF)

— 47 —



Chapter 2. Introduction (for English speakers)

measure, ψ. The program to be solved is then

max [φ(u)]s × [ψ(u)]1−s , s ∈ [0, 1] ,
subject to ‖u‖ = 1 and Xu ⊥ Fh−1.

φ is a SR flexible criterion allowing to specify the type of explanatory structures
with which components should align, as well as the “resolution” to be consid-
ered for the construction of the component. ψ turns out to be a GoF measure
of Schall’s linearised regression model of the multivariate response on the ad-
ditional explanatory variables and on the previously calculated components.

Regularisation of GLMMs with an autoregressive
time–specific random effect

Up to now, we focused on multivariate GLMMs only considering
individual–specific random effects. We are in this part more interested in de-
veloping regularisation methods within the specific framework of panel data
(involving repeated measures on several individuals at the same time–points).

Eliot et al. (2011) focus on the correlated response setting in which a single
outcome of interest is measured repeatedly on several individuals over time, at
potentially unevenly spaced time intervals. In order to handle the potentially
high correlations between explanatory variables, they propose to extend the
ridge regression to this context. Based on a penalised complete log–likelihood,
the Expectation–Maximisation (EM) algorithm they suggest includes a new
step to find the best shrinkage parameter using a Generalised Cross–Validation
(GCV) scheme at each iteration. As their paper considers longitudinal data,
the model includes an individual–specific random effect but does not include
a time–specific random effect common to all the individuals.

Individual–specific random effects are often assumed normally dis-
tributed with independent levels. However, for panel data frameworks, the
question of the autocorrelation of the time–specific random effect naturally
arises. That is why, for instance, Karlsson and Skoglund (2004) consider both
individual– and autocorrelated time–specific random effects. The latter are
viewed as latent phenomena (not accounted for by the explanatory variables)
affecting all individuals and persistent over time. However, the authors do not
consider any situation where it is necessary to regularise the model.
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Figure 2.4 – Some vectors and matrices of the model with individual– and time–
specific random effects.

The challenge was to combine both issues, by proposing regularisation
methods that tackle redundant explanatory variables, in a model with both
individual– and autocorrelated time–specific random effects. In order to sim-
plify the framework, let us now consider only one response vector y, which
concatenates the outputs measured on q1 individuals at the same q2 time–
points. In addition, to focus on regularisation, let us no longer involve ad-
ditional explanatory variables. By contrast, two random effects are introduced
in our model (see Figure 2.4):

I ξ1 is the q1–level individual random effect, which links all the observa-
tions of an individual to the same realisation of the random effect. We
assume ξ1 ∼ Nq1 (0, σ2

1A1), where σ2
1 is the individual variance compo-

nent andA1 is a known matrix.

I ξ2 is the q2–level time–specific random–effect which links all the obser-
vations at a time t to the same realisation of the random effect. It models
a latent phenomenon with a certain temporal inertia, impacting all the
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individuals. We assume ξ2 ∼ Nq2 (0, σ2
2A2(ρ)), where σ2

2 is the time–

specific variance component and A2(ρ) =
(
ρ|i−j|

1− ρ2

)
16i,j6q2

. Parameter ρ

reflects the order–1 autoregressive correlation structure of ξ2.

First, we considered necessary to adapt the “mixed ridge regression” pro-
posed by Eliot et al. (2011) to the case of both individual– and autocorrelated
time–specific random effects. Let β denote the p–dimensional fixed–effect pa-
rameter, ξ = (ξT

1, ξ
T
2)T and U the associated design matrix. The model we

consider writes
y = Xβ +Uξ + ε,

where ε is the vector of Gaussian errors. In Eliot’s wake, we suggest to esti-
mate parameters θ = (β, σ2

1, σ
2
2, ρ) with an EM algorithm, based on the like-

lihood penalised by the L2–norm of the regression coefficients. The resulting
penalised complete log–likelihood `c

ridge is therefore

`c
ridge (θ;y, ξ) = `c (θ;y, ξ)− λ

2 ‖β‖
2
2 ,

where `c refers to the complete log–likelihood and λ > 0 is the usual shrinkage
parameter.

The main drawback of this method is that it penalises the large coefficients
because it considers the high correlations among the explanatory variables to
be pure nuisance, since they favour effect–confusion. That is why we then
propose a Supervised Component EM (SCEM) as an alternative: instead of
subtracting a penalty term to the complete log–likelihood, we rather suggest
to add a bonus term favouring the alignment of components with the most
interpretable directions in the explanatory subspace. The single–component
model we consider is

y = (Xu) γ +Uξ + ε,

where u is a loading–vector and γ is the regression parameter associated with
component f = Xu. The resulting regularised complete log–likelihood, at-
tempting a trade–off between `c and a SR measure φ, writes

`c
SC (θ;y, ξ) = (1− s) `c (θ;y, ξ) + s log [φ (u)] ,

where θ = (u, γ, σ2
1, σ

2
2, ρ) and s ∈ [0, 1]. Note that the SCEM is also designed

to search for several orthogonal components.

Finally, extensions of the two previous methods in the GLMM framework
are also developed. As in Schall’s algorithm, our proposal alternates between
linearisation and estimation steps. But in order to take into account both the
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high level of redundancy in X and the autocorrelated structure of the time–
specific random effect, we suggest to replace the usual estimation step (involv-
ing particular Henderson’s systems) with a ridge–penalised or SC–regularised
EM.

Overview

To sum things up, this thesis deals with the regularisation of Generalised
Linear Mixed Models. Chapters 3 and 4 are brief state–of–the–art chapters:
Chapter 3 presents some of the regularisation methods commonly used for
GLM estimation, and Chapter 4 focuses on the usual estimation methods
for GLMMs. Each subsequent chapter is then dedicated to our contribu-
tions to GLMM regularisation methods. Chapter 5 extends the Supervised
Component–based Generalised Linear Regression (SCGLR) to deal with re-
peated measures in the context of multivariate GLMMs. Our proposal is
to adapt the Schall’s algorithm to particular component–based linear predic-
tors, which are constructed taking into account both the explanatory variables
structure and the prediction quality of the responses. Our extended method,
“mixed–SCGLR”, is tested on simulated and real data, and compared to clas-
sical regularisation methods such as ridge and LASSO. Chapter 6 focuses on
the two–way random effect models (i.e including both individual– and time–
specific random effects) for Gaussian panel data. We first developed a ridge–
penalised EM for Gaussian panel data, and then a Supervised Component EM
as an interesting alternative that greatly improves the model interpretation.
An extension of these algorithms is also proposed in the non–Gaussian case.
Finally, Chapter 7 outlines some of the ongoing work and perspectives.
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Chapter 3. Regularised GLM estimation

3.1 Introduction

Ordinary linear regression models express the expected value of a random
response variable as a linear combination of observed explanatory variables.
Such models inherently assume that changes in an explanatory variable lead
to proportional changes in the expected value of the response variable. While
this assumption is appropriate when the response variable has a Gaussian dis-
tribution, it is much less so for bounded (such as proportions for example),
qualitative or discrete responses. Generalised Linear Models (GLM, Nelder
and Wedderburn, 1972) cover all these situations by allowing response vari-
ables to belong to any distribution from the exponential family. This model
class also expresses the expected value of the response variable as a function
of a linear combination of the explanatory variables. That is why the GLMs
are widely used in many areas. McCullagh and Nelder (1989) provide a com-
plete overview of GLMs, and Fahrmeir and Tutz (1994) extend this overview
to multivariate models.

Now, when a phenomenon is richly described through a high number of
explanatory variables, the latter tend to have high redundancies. This results
in identification troubles and in a severe lack of stability in the estimation of
regression models. To make estimation of such models feasible, it is neces-
sary to combine their likelihood with an extra criterion, so that maximising the
combination yields regularised estimators. This chapter proposes to explore
the main regularisation strategies for GLMs.

The chapter is organised as follows. After providing a description of
a GLM in Section 3.2, Section 3.3 recalls some classical estimation methods.
Then, Sections 3.4 and 3.5 respectively present a brief state of the art concern-
ing the penalty– and component–based approaches to regularise GLMs. Fi-
nally, Section 3.6 discusses hybrid methods which combine both approaches.

3.2 Definition, assumptions and notations

Three elements are necessary to describe a GLM: a probability distribution
for the random response variable, a predictor expressed as a linear combina-
tion of explanatory variables, and a link function relating the response variable
to the explanatory variables.

(H1) Denote y = (y1, . . . , yn)T the observed response vector, which is a real-
isation of the random vector Y = (Y1, . . . , Yn)T. The Yi’s are assumed

— 54 —



3.2. Definition, assumptions and notations

independent and they have a distribution belonging to the exponential
family. The density of Yi can be expressed in the form

p (yi ; θi) = exp
{
yiθi − b (θi)

ai(φ) + c(yi, φ)
}
, (3.1)

where θi is a canonical parameter and φ a dispersion parameter usually
known and related to the variance of the distribution. Functions b and
c are known and specific to each distribution. The function ai is of the
form ai(φ) = φ

wi
, where wi is a known prior weight associated to the ith

observation.

For each distribution described by Equation 3.1, the expectation and vari-
ance of Yi are expressed using functions ai and b. Indeed, let ` (θ ;y) =
log [p (y ;θ)] be the log–likelihood function. The classic results

0 = E
[
∂` (θ ;y)

∂θ

]
0 = E

[
∂2` (θ ;y)
∂θ∂θT

]
+ E

[(
∂` (θ ;y)

∂θ

)(
∂` (θ ;y)

∂θ

)T]
lead to {

E(Yi) = b′(θi)
V(Yi) = ai(φ) b′′(θi).

There is therefore a direct link between the expectation and the variance
of Yi:

V (Yi) = ai(φ) b′′ ◦ b′−1(E(Yi)
)
.

Denote µi := E(Yi) and v := b′′ ◦ b′−1. The independence of the Yi’s finally
leads to

V (Y ) = Diag
(
ai(φ) v (µi)

)
i=1,...,n

.

(H2) As in linear models, the explanatory variables are linearly involved in
the model. The linear predictor, η, can be expressed as

η = Xβ,

where β is the fixed–effect parameter vector andX its associated design
matrix.

(H3) By contrast, extending linear models, the linear predictor is related to
the expected value of the data, µ = (µ1, . . . , µn)T, through a link function
g such that

η = g (µ) .
Note that this link function g must be strictly monotonic and twice–
differentiable.
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Section 3.3 discusses the classical estimation methods of a GLM, focusing on
maximum (quasi–) likelihood estimation.

3.3 Estimation methods without regularisation

3.3.1 Maximum likelihood estimation

The purpose of this section is to briefly present how to implement the
maximum likelihood estimation for a GLM. In view of the independence of
the Yi’s and according to (3.1), the log–likelihood function writes

` (θ ;y) =
n∑
i=1

`i (θi ; yi) ,

where
`i (θi ; yi) = log [p (yi ; θi)] = yiθi − b(θi)

ai(φ) + c(yi, φ).

The maximum likelihood estimation equations for parameter β are obtained
from the chain derivative rule. For each i ∈ {1, . . . , n} and for each j ∈
{1, . . . , p}, we have then

∂`i
∂βj

= ∂ηi
∂βj

∂µi
∂ηi

∂θi
∂µi

∂`i
∂θi

= xij
1

g′(µi)
1

b′′(θi)
yi − µi
ai(φ) . (3.2)

As a result,

∂`

∂βj
=

n∑
i=1

xij
1

g′(µi)
1

b′′(θi)
yi − µi
ai(φ) =

n∑
i=1

xij
1

V(Yi) [g′(µi)]2
g′(µi)(yi − µi).

Now, let us consider the two matrices

W = Diag
(

1
V(Yi) [g′(µi)]2

)
i=1,...,n

and
dη
dµ = Diag

(
dηi
dµi

)
i=1,...,n

= Diag
(
g′(µi)

)
i=1,...,n

.

The maximum likelihood estimate is then the solution of the score equation

XTW
dη
dµ (y − µ) = 0. (3.3)
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Now (3.3) is a non–linear equation in β, since the matrices W and
dη
dµ , as

well as the vector µ, depend on β. Two general methods can then be used:
the Newton–Raphson (NR) method and the Fisher Scoring Algorithm (FSA).
Depending on the chosen method, at iteration t, the new estimate β[t+1] is ob-
tained from the previous estimate β[t] by

β[t+1] = β[t] −

([
∂2`

∂β∂βT

][t]
)−1(

∂`

∂β

)[t]

for NR,

β[t+1] = β[t] −

(
E
[

∂2`

∂β∂βT

][t]
)−1(

∂`

∂β

)[t]

for the FSA.

(3.4)

(3.5)

The NR method and the FSA have essentially the same convergence proper-
ties, but as the FSA is often easier to compute, it is the most widely used. In
addition, for models involving the canonical link, i.e. when g = b′−1, they are
strictly equivalent.

Equivalence of NR and FSA for a canonical link. As mentioned by Nelder
and Wedderburn (1972) and detailed by McCullagh and Nelder (1989), the
updates (3.4) and (3.5) are equivalent in the case of a canonical link. Indeed,
the canonical link is defined by

∀i ∈ {1, . . . , n} , ηi = θi = g (µi) = xT
i: β, i.e. g = b′−1.

In this case, we have

∂µi
∂ηi

= ∂µi
∂θi

= ∂b′(θi)
∂θi

= b′′(θi)

so that the chain derivative rule (3.2) becomes

∂`i
∂βj

= ∂ηi
∂βj

∂µi
∂ηi

∂θi
∂µi

∂`i
∂θi

= ∂ηi
∂βj

∂µi
∂θi

∂θi
∂µi

∂`i
∂θi

= xij
H
HHHb′′(θi)

1
H
HHHb′′(θi)

yi − µi
ai(φ) . (3.6)

The terms involved the Hessian matrix in (3.4) are then expressed as

− ∂2`i
∂βj∂βk

= − ∂

∂βk

(
xij

yi − µi
ai(φ)

)
= xijxik

b′′(θi)
ai(φ) = xijxik

V(Yi)
[ai(φ)]2

,
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while the terms involved the Fisher information in (3.5) write

−E
[

∂2`i
∂βj∂βk

]
= E

[(
∂`i
∂βj

)(
∂`i
∂βk

)]
= E

[
xijxik

(
yi − µi
ai(φ)

)2
]

= xijxik
V(Yi)

[ai(φ)]2
.

This proves the equivalence of the two methods for the canonical link function.

The FSA as an Iteratively Re–weighted Least Squares algorithm. It turns
out that the update given by (3.5) can be written as

β[t+1] =
(
XTW [t]X

)−1
XTW [t]z[t], (3.7)

where

z[t] = Xβ[t] +
(

dη
dµ

)[t] (
y − µ[t])

W [t] = Diag

({
ai(φ) v

(
µ

[t]
i

) [
g′
(
µ

[t]
i

)]2
}−1

)
i=1,...,n

.

Now, Equation 3.7 is the score equation for a weighted least squares regres-
sion of z[t] on X with weights W [t]. Hence the estimates can be found using
an Iteratively Re–weighted Least Squares (IRLS, Green, 1984) as described in
Algorithm 3.1.

Algorithm 3.1: The IRLS algorithm.

Start with an initial guess µ[0] =
(
µ

[0]
1 , . . . , µ

[0]
n

)
and set t = 0

while some convergence criterion not reached do

Calculate the working response and the weight matrix: Set

z[t] = g
(
µ[t])+ Diag

(
g′
(
µ[t]) ) (y − µ[t])

W [t] = Diag

({
ai(φ) v

(
µ

[t]
i

) [
g′
(
µ

[t]
i

)]2
}−1

)
i=1,...,n

Update the fixed–effect estimate and mean vector: Set

β[t+1] =
(
XTW [t]X

)−1
XTW [t]z[t]

µ[t+1] = g−1
(
Xβ[t+1]

)
t← t+ 1

end
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3.3.2 Maximum quasi–likelihood estimation

In some circumstances (overdispersion for instance), the parametric form
of the likelihood is misspecified, making it impossible to implement the maxi-
mum likelihood estimation described in Section 3.3.1. In response to this prob-
lem, the idea of Wedderburn (1974) was to develop an estimation procedure
that only requires specifying the mean function of the response and a relation-
ship between mean and variance functions. Relaxing the assumptionsH1,H2,
H3, Wedderburn (1974) introduced the “quasi–likelihood” function, which al-
lows the estimation to be performed in a more flexible way. More precisely, he
only assumes that

I the observations y1, . . . , yn are independent,

I for each observation i, the mean is some known function of parameter β,
i.e. E(Yi) = µi(β),

I for each observation i, the link between variance and mean writes
V(Yi) = ai(φ)v(µi), where v and a are some known functions.

The construction of the log–quasi–likelihood of observation i, namely ˜̀i, is
based on its first and second derivatives with respect to µi. The author then
suggests choosing a function that fulfils

E

[
∂ ˜̀i (µi ; yi)

∂µi

]
= 0

V

[
∂ ˜̀i (µi ; yi)

∂µi

]
= −E

[
∂2˜̀

i (µi ; yi)
∂µ2

i

]
= 1
ai(φ)v(µi)

,

so that ˜̀i has essentially the same properties as a log–likelihood. A function
that satisfies these conditions is defined by the relation (Wedderburn, 1974;
McCullagh and Nelder, 1989)

∂ ˜̀i (µi ; yi)
∂µi

= yi − µi
a(φ)v(µi)

.

In the end, the expression of the log–quasi–likelihood results from the inde-
pendence of observations:

˜̀(µ ;y) =
n∑
i=1

∫ µi

yi

yi − t
ai(φ)v(t)dt.

It turns out that the same chain derivative rule as described in Section 3.3.1
leads to a “quasi–score” function U(β), so that the maximum quasi–likelihood
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estimate is the solution of the “quasi–score” equation

U(β) = GTV −1 (y − µ) = 0,

where G = ∂µ

∂βT and V = Diag
(
ai(φ)v(µi)

)
i=1,...,n. The sequence of parameter

estimates generated by the FSA is then given by

β[t+1] = β[t] −

E

[
∂2˜̀

∂β∂βT

][t]
−1(

∂ ˜̀
∂β

)[t]

= β[t] +
(
G[t]T

V [t]−1
G[t]
)−1

G[t]T
V [t]−1 (

y − µ[t]) . (3.8)

As pointed out by McCullagh and Nelder (1989), if there is a matrix K [t] such
asG[t] = K [t]X , then the iteration given by (3.8) can be rewritten

β[t+1] =
(
XT W̃

[t]
X
)−1

XT W̃
[t]
z̃[t],

where
W̃

[t]
= K [t]T

V [t]−1
K [t]

z̃[t] = Xβ[t] +K [t]−1 (
y − µ[t]) .

As a result, the estimation by maximum quasi–likelihood leads to the same
IRLS procedure as described in Algorithm 3.1, replacing z[t] by z̃[t] andW [t] by

W̃
[t]

. It is important to note that, if the variance function v used in the model is
actually the natural variance function associated with a distribution from the
exponential family, and if ∀i ∈ {1, . . . , n} , µi = g−1 (xT

i:β), the maximum likeli-
hood and maximum quasi–likelihood estimations are equivalent. The strength
of the maximum quasi–likelihood estimation is that it allows other variance
functions to be considered. For instance, it has proven to be extremely use-
ful to estimate the dispersion parameter in quasi–Poisson models (Nelder and
Pregibon, 1987; Godambe and Thompson, 1989), which assume V(Yi) > E(Yi)
instead of V(Yi) = E(Yi).

Alternative estimation methods have also been developed within the
Bayesian paradigm. The major difficulty with Bayesian methods in the context
of GLMs is that in general, the posterior distribution cannot be found in closed
form and so must be approximated, usually using Laplace approximations
or some type of MCMC methods such as Gibbs sampling or the Metropolis–
Hastings algorithm. The reader can refer to Dey et al. (2000) for detailed de-
scriptions.

The rest of the chapter is devoted to regularisation techniques which are
used, among other things, to solve overfitting issues that can occur in GLM.
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Section 3.4 then presents the main penalty–based techniques (shrinkage meth-
ods) and Section 3.5 focuses on component–based ones.

3.4 Penalty–based regularisation methods

In order to avoid overfitting and reduce the variance of the prediction er-
ror, or to handle correlated explanatory variables, the first regularisation strate-
gies available consist in introducing a penalty into the model estimation pro-
cess. The two most common penalty–based regression techniques are the ridge
regression, which involves the L2–norm of the regression coefficient–vector,
and the LASSO regression, which involves its L1–norm. The elastic net is a
trade–off between the two previous regularisation methods that combines L1
and L2 penalties. Section 3.4.1 presents these three penalty–based regularisa-
tions in the usual linear regression setting, for which parameter estimation can
be performed by a penalised least squares approach. Section 3.4.2 then outlines
their extensions to the context of GLMs.

3.4.1 Penalised least squares

In this section, we consider the usual setup for linear regression: the pur-
pose is to estimate parameter β ∈ Rp in the linear model

y = Xβ + ε,

where y ∈ Rn is the response vector, Xn×p =
[
x1 | . . . | xp

]
is the design

matrix and ε ∈ Rn is the vector of errors such that E(ε) = 0 and V(ε) = σ2In.
For simplicity, we also assume that the response vector is centred and that each
explanatory variable xj is normalised, i.e.

n∑
i=1

yi = 0,

n∑
i=1

xij = 0 and
1
n

n∑
i=1

x2
ij = 1, ∀j ∈ {1, . . . , p} .

3.4.1.1 Ridge regression (Tikhonov regularisation)

In this framework, the ridge regression cost function is a residual sum of
squares penalised by the L2–norm of the regression coefficients. This penalty
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shrinks the coefficients towards zero, and also shrinks the coefficients of cor-
related explanatory variables towards each other. In matrix form, the ridge
regression estimate is

β̂ridge = arg min
β

{
‖y −Xβ‖2

2 + λ ‖β‖2
2

}
= arg min

β

{
(y −Xβ)T (y −Xβ) + λβTβ

}
,

(3.9)

where λ > 0 is a tuning parameter that controls the amount of shrinkage. In
order to make the size–constraint on the parameter more explicit, the problem
(3.9) can be rewritten

β̂ridge =
{

arg min
β
‖y −Xβ‖2

2

subject to ‖β‖2
2 6 Rλ,

(3.10)

where the radius Rλ is in bijection with the shrinkage parameter λ in (3.9).
When the explanatory variables are highly redundant, their usual coefficients
(without regularisation) are often poorly determined since they exhibit high
variance. Imposing a size constraint on the coefficients reduces their variance
and the effect–confusion.

Since its introduction by Hoerl and Kennard (1970a,b), the ridge regres-
sion has been used extensively, probably for three reasons.

(i) Equivalent problems (3.9) and (3.10) admit a closed–form solution, there-
fore easy to compute:

β̂ridge = (XTX + λIp)−1
XTy. (3.11)

(ii) Like the Ordinary Least Squares (OLS) estimate, the ridge one (3.11) is
a linear function of y. But unlike the OLS estimate, the solution adds a
positive constant to the diagonal of XTX before inversion, making the
problem non–singular even if XTX is not of full rank. The ridge regres-
sion is therefore a response to the problem of collinearity of explanatory
variables in high–dimensional settings, where the OLS approach fails.

(iii) Finally, Hoerl and Kennard (1970a,b) decompose the Mean Squared Error
(MSE) of the ridge estimate into

MSE
(
β̂ridge

)
= E

(∥∥∥β̂ridge − β
∥∥∥2

2

)
= γ1(λ) + γ2(λ),

where γ1 is the total variance of the parameter estimate and γ2 is a
squared bias term, both expressed as a function of shrinkage parameter
λ. Underlining that functions γ1 and γ2 are respectively monotonically
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decreasing and increasing, the authors show that there always exists a
λ > 0 such that

MSE
(
β̂ridge

)
< MSE

(
β̂OLS

)
.

Interestingly, there is a close relationship between ridge and principal
component regressions (introduced in Section 3.5.1.1), which provides a better
understanding of how ridge regression works (Friedman et al., 2001). Indeed,
let us consider the singular value decomposition of matrix X , which has the
form

X = UDV T,

where U and V are orthogonal matrices such that span {U} = span {X} and
span {V } = span {XT}, and where D is the diagonal matrix of the singular
values d1 > d2 > . . . > dp > 0. We can then compare the predictions obtained
by the OLS and ridge approaches:

ŷOLS = Xβ̂OLS

= X (XTX)−1
XTy

=
p∑
j=1

uj u
T
jy

=
p∑
j=1

〈uj |y 〉 uj .

ŷridge = Xβ̂ridge

= X (XTX + λIp)−1
XTy

=
p∑
j=1

uj
d2
j

d2
j + λ

uT
jy

=
p∑
j=1

d2
j

d2
j + λ

〈uj |y 〉 uj .

Now, the fact is that uj is the jth normalised principal component of X , as-
sociated with eigenvalue d2

j . As a result, ridge regression slightly shrinks the
directions in span {X} having high variance (high d2

j ), but greatly shrinks the
directions having small variance (small d2

j ).

In a nutshell, the ridge regression allows to get around the collinearity
problems even if the numbers of explanatory variables is large. It is notewor-
thy that with this method, all the explanatory variables are included in the
model. The ridge regression is then inefficient to explain a response when
some of the explanatory variables are the “true” ones, surrounded by a high
number of irrelevant others. In this case, sparse regression methods are more
appropriate because they are able to exactly set the coefficients associated with
irrelevant variables to zero. Section 3.4.1.2 briefly presents the most popular of
the sparse regression methods: the LASSO.
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3.4.1.2 LASSO regression

The LASSO (Tibshirani, 1996) is a shrinkage regression method like ridge,
where the L2–penalty ‖β‖2

2 is replaced with the L1–penalty ‖β‖1. The LASSO
estimate is then defined by

β̂LASSO = arg min
β

{
‖y −Xβ‖2

2 + λ ‖β‖1

}
, (3.12)

where λ > 0 is still a tuning parameter that controls the amount of shrinkage.
Just like ridge, we can also write the LASSO problem (3.12) as

β̂LASSO =
{

arg min
β
‖y −Xβ‖2

2

subject to ‖β‖1 6 Rλ,
(3.13)

where there is a one–to–one correspondence between the shrinkage parameter
λ in (3.12) and the radius Rλ in (3.13). The fundamental difference with ridge
regression is that the L1–penalty is intended to induce the sparsity of the so-
lution. Indeed, large enough λ (or equivalently small enough Rλ) will cause
some coefficients to be exactly equal to zero. LASSO is therefore widely used
for variable selection purposes.

Unfortunately, unlike ridge regression, β̂LASSO has no closed form expres-
sion due to the L1–penalty. This explains why plethora of algorithms have
been developed to implement the LASSO. Among them, the two most popu-
lar are certainly the least–angle regression (Efron et al., 2004), and the cyclic
coordinate descent. The latter have been proposed a number of times for the
LASSO but has only been popularised by Friedman et al. (2007) and Wu et al.
(2008). Now, it seems that the cyclic coordinate descent generates consensus,
thanks to its simplicity of implementation and its easy generalisation to GLMs.
We will come back to this algorithm in Sections 3.4.1.3 and 3.4.2.

In short, since all coefficients are shrinked towards zero, LASSO reduces
their variance, as does ridge. The main advantage of LASSO is that it is de-
signed to eliminate nuisance variables in the model by estimating their coeffi-
cients as zeros. However, LASSO has two limitations. First, it will fail to select
a whole set of highly correlated explanatory variables. Indeed, if explanatory
variables are highly correlated with each other, the LASSO tends to choose
only one and ignore the others. In addition, if p � n, the LASSO selects at
most n explanatory variables: the number of selected variables is bounded by
the number of observations. These two limitations are particularly problematic
for genetic applications. The elastic net regularisation proposes to overcome
them.
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3.4.1.3 Elastic net regression

The elastic net method (Zou and Hastie, 2005) is a regularisation technique
that combines L1 and L2 penalties. Thus, this method is a trade–off between
LASSO and ridge regressions. The elastic net estimator is defined by

β̂EN = arg min
β

{
1
2 ‖y −Xβ‖

2
2 + λ

[
α ‖β‖1 + 1− α

2 ‖β‖2
2

]}
, (3.14)

where λ > 0 is still a tuning parameter that controls the amount of shrinkage,
and α ∈ [0, 1] is a parameter that tunes the trade–off between the ridge penalty
(α = 0) and the LASSO penalty (α = 1).

To solve (3.14), the cyclic coordinate decent (Tseng, 2001; Friedman et al.,
2007) optimises each parameter βj separately holding all the others fixed, and
cycle around the coefficients until they stabilise. Suppose we have estimates
β̃k for k 6= j, and we wish to partially optimise with respect to βj . The update
for βj then writes

β̃j ←−
sT
( n∑
i=1

xij r̃
(−j)
i , λα

)
1 + λ(1− α) , (3.15)

where

I r̃
(−j)
i is the partial residual that ignores the contribution from xij , namely

r̃
(−j)
i = yi − ỹ(−j)

i = yi −
∑
k 6=j

xikβ̃k,

I and sT is the soft–thresholding operator defined as

sT(z, t) = sgn(z)
(
|z| − t

)
+ =


z − t if z > 0 and t < |z|
z + t if z < 0 and t < |z|
0 if t > |z|.

Hence, the elastic net is a powerful continuum between ridge and LASSO
regressions, easy to implement via the cyclic coordinate descent procedure.
The L1 penalty generates a sparse model, while the L2 penalty, initially in-
troduced to overcome the limitations of LASSO described at the end of Sec-
tion 3.4.1.2, stabilises the L1 regularisation. While providing a variable selec-
tion and continuous shrinkage, the elastic net is also able to select a whole
group of correlated explanatory variables instead of selecting a single one. Sec-
tion 3.4.2 gives its extension to GLMs.
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3.4.2 Elastic net for GLMs

All the regularisation methods presented so far take the form of penalised
least squares. As a result, they correspond to the maximisation of a penalised
log–likelihood of a Gaussian model. Friedman et al. (2010) derive the extension
of elastic net regression to the more general framework of GLMs. The idea is
to integrate the cyclic coordinate descent procedure within the IRLS algorithm.
The update for βj (3.15) becomes

β̃j ←−
sT
( n∑
i=1

wixij r̃
(−j)
i , λα

)
n∑
i=1

wix2
ij + λ(1− α)

, (3.16)

wherewi is the weight of the ith observation inherited from the IRLS algorithm.
Note that the partial residual r̃(−j)

i in (3.16) involves this time the working vari-
able zi, also inherited from the IRLS algorithm:

r̃
(−j)
i = zi −

∑
k 6=j

xikβ̃k.

The elastic net regression for GLMs is available in the R package glmnet.
For classification problems in particular, it has proven to reduce prediction
errors compared to competing methods, with lower computational costs.

The literature on penalty–based regularisation methods is very extensive
and it would be unrealistic to expect a comprehensive review of it. Besides, the
framework we want to focus on is that of many explanatory variables that can
be highly correlated, seen as proxies to latent phenomena to be found and in-
terpreted. In this context, variable selection is inappropriate and ridge suffers
from a lack of interpretability. It is then necessary to turn to component–based
approaches.

3.5 Component–based regularisation methods

Component–based approaches assume that the information contained in
the explanatory variables X can be summarised into a much lower dimen-
sional space. The idea is to produce a small number of components (i.e. linear
combinations {f1, . . . ,fK} of the original explanatory variables xj’s), and to
use the fk’s instead of the xj’s as inputs in the regression. The different ap-
proaches only differ in how the components are constructed. Section 3.5.1 pro-
vides a quick reminder on the Principal Components and Partial Least Squares
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Regressions (PCR/PLSR), and Section 3.5.2 presents the extensions of the PLSR
for GLMs.

3.5.1 Principal Components and Partial Least Squares Regres-
sions

We reconsider the simple linear model y = Xβ + ε, such as defined at
the beginning of Section 3.4.1. We still assume that the response is centred and
that each explanatory variable is normalised.

3.5.1.1 Principal Components Regression

In this approach (see Jolliffe, 1982), the linear combinations fk’s used are
the principal components. Suppose that the first K principal components are
constructed, for some K < p. Since they are orthogonal, the PCR provides a
predictor of the form

ŷPCR =
K∑
k=1

θ̂kfk, (3.17)

where θ̂k is the coefficient of the classical regression of y on fk, namely:

θ̂k = 〈y |fk 〉
〈fk |fk 〉

= 〈y |fk 〉
‖fk‖2

2
. (3.18)

The first principal component f1 = Xu1 is designed to capture as much of the
variability in the data as possible. It is then the solution of the maximisation
program

max
uTu=1

Var (Xu) ⇐⇒ max
uTu=1

‖Xu‖2
2 ⇐⇒ max

uTu=1
〈Xu |Xu 〉

⇐⇒ max
uTu=1

uTXTXu.

Each successive component in turn has the highest variance under the con-
straint that it is orthogonal to the preceding components. Each component fk
is a linear combination of the original explanatory variables: we indeed have
fk = Xuk, where uk is called the loading–vector associated with fk. Pre-
dictions (3.17) can then be expressed in terms of coefficients of the original
explanatory variables:

ŷPCR =
K∑
k=1

θ̂kXuk = X

K∑
k=1

θ̂kuk︸ ︷︷ ︸
β̂PCR

.
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The main disadvantage of PCR is that the principal components do not
take into account the response variable y. In order to favour the directions of
interest for modelling y, regression on Partial Least Squares (PLS) components
is preferable.

3.5.1.2 Partial Least Squares Regression

The PLS regression was first introduced by Wold (1966), and then had
a great success, particularly in the field of chemometrics (Wold et al., 1983,
2001). Like PCR, the PLS regression constructs new components

{
fk = Xuk |

k = 1, . . . , K
}

as linear combinations of the original explanatory variables.
But unlike PCR, the loading–vector uk maximises the covariance between the
component fk and the response y. The underlying maximisation program also
assumes that each uk have unit norm and that each fk is orthogonal to the
preceding components:

uk =


arg max

u
Cov (Xu,y)

‖u‖2 = 1
Xu ⊥ f1, . . . ,fk−1

=


arg max

u
〈Xu |y 〉

‖u‖2 = 1
Xu ⊥ f1, . . . ,fk−1.

(3.19)

A simple way to solve maximisation programs (3.19), is given in Algorithm 3.2.
The orthogonality constraint of the components is ensured by deflating design
matrixX at each step of the algorithm.

Algorithm 3.2: The univariate PLS (PLS1).

Input: response vector y, design matrixX , number of components K.

SetX0 = X

for h = 1 to K do

uh =
XT

h−1y∥∥XT
h−1y

∥∥ // Computing the loading-vector

fh = Xh−1uh // Computing the component

ph =
XT

h−1fh

f T
hfh

// Regression coefficient of Xh−1 on fh

Xh = Xh−1 − fhpT
h // Deflation of matrix Xh−1

end

The components constructed in Algorithm 3.2 can be expressed using the
original explanatory variables. As for PCR, there is a vector of coefficients
β̂PLSR, which can be recovered from the sequence of PLS transformations, such
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that ŷPLSR = Xβ̂PLSR. It is straightforward to show that the kth PLS loading–
vector uk also solves


max
u

Corr2 (Xu,y) Var (Xu)
‖u‖2 = 1
Xu ⊥ f1, . . . ,fk−1,

meaning that the direction of the first loading–vector in PLS is a trade–off
between that of the ordinary regression coefficient–vector and that of the
loading–vector of the first principal component.

The PLSR algorithm has been extended to the multivariate case, i.e. with
several response variables y1, . . . ,yq. This point will be developed in more
details in Section 3.5.2.3. We will now briefly discuss the few extensions of
PLSR to GLMs that have been proposed in the literature.

3.5.2 Extension to GLMs

3.5.2.1 PLS for Generalised Linear Regression (PLS–GLR)

Bastien et al. (2005) note that the PLSR of a quantitative response y on
X =

[
x1 | . . . | xp

]
yields a rank–1 component

f1 = 1√
p∑
j=1

Cov (y,xj)2

p∑
j=1

Cov (y,xj) xj ,

where the quantity Cov (y,xj) is nothing but the coefficient associated with
the simple OLS regression of y on xj . Rank–2 component can be obtained
likewise, after replacing each xj with its OLS regression residuals on f1, and
so on. The extension of this approach to GLMs is straightforward and consists
in replacing the OLS regressions of y on each xj alone by Generalised Linear
Regressions (GLR). Algorithm 3.3 summarises the strategy.

This extension is very simple but the weighting of observations seems in-
consistent, since the estimated weighting matrix associated with the GLR of y
on the components is not correctly used by this method. That is why we prefer
the method proposed by Marx (1996), summarised in Section 3.5.2.2.
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Algorithm 3.3: The PLS–GLR.

Input: response vector y, design matrixX , number of components K.

for h = 1 to K do
for j = 1 to p do

Carry out the GLR of y on {f1, . . . ,fh−1,xj}.
Let ahj be the coefficient associated with xj .

end
Set uh = ah/ ‖ah‖, where ah = (ah1, ah2, . . . , ahp)T

Set fh = Xuh
X ← residual matrix of the linear regression ofX on {f1, . . . ,fh}

end

3.5.2.2 Iteratively Reweighted PLS (IRPLS)

The method developed by Marx (1996), IRPLS, is another way to extend
the PLSR to GLMs, but unlike PLS–GLR, it is based on the IRLS scheme (see
Algorithm 3.1). IRPLS can then be viewed as an IRLS in which the weighted
least squares regression used to update parameter β is replaced by a weighted
PLS regression. More precisely, let z[t] and W [t] respectively be the working
variable and the weight matrix at the tth iteration of the IRLS. Instead of the
classical update for β, namely

β[t+1] =
(
XTW [t]X

)−1
XTW [t]z[t],

Marx (1996) rather suggests to set

β[t+1] ← PLSRW [t]
(
z[t],X

)
,

where PLSRW [t]
(
z[t],X

)
refers to the PLS regression of z[t] on X , in which

the observations are weighted by W [t]. IRPLS seems much more consistent
than PLS–GLR since at each iteration, the weighting matrix deriving from the
maximum likelihood estimation is taken into account in the PLS regression.
The IRPLS procedure has inspired Bry et al. (2013), who have proposed to
extend it to the multivariate case.

3.5.2.3 Supervised Component Generalised Linear Regression (SCGLR)

Bry et al. (2013) consider a multivariate GLM involving several response
vectors y1, . . . ,yq. In their rank–1 component model, the authors suggest a
linear predictor associated with response variable yk of the form

ηk = (Xu) γk,
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where the component f = Xu is common to all the yk’s while the regression
parameter γk is specific to each response. At step t of the IRLS algorithm,
each yk leads to a specific working variable z[t]

k and a specific weighting matrix
W

[t]
k . The usual weighted least squares is then replaced, in Marx’s wake, by a

multivariate PLSR (PLS2 regression). The first unit loading–vector u1 then
solves

max
uTu=1

q∑
k=1

〈
z

[t]
k

∣∣∣Xu〉2

W
[t]
k

⇐⇒ max
uTu=1

q∑
k=1

∥∥∥z[t]
k

∥∥∥2

W
[t]
k

‖Xu‖2
W

[t]
k

cos2
W

[t]
k

(
z

[t]
k ,Xu

)
,

(3.20)

and higher–rank components can be constructed either by deflation or by
adding an extra orthogonality constraint to the previous components.

Bry et al. (2013) also propose the possibility of modifying the geometry of
the maximisation program (3.20), leading to the notion of “Supervised Com-
ponents” (SC). By introducing a tuning parameter s ∈ [0,+∞), they suggest
an alternative program which writes

max
uT(XTPX)−su=1

q∑
k=1

〈
z

[t]
k

∣∣∣Xu〉2

W
[t]
k

, (3.21)

where P is a weighting matrix reflecting the importance given a priori to each
unit. In (3.21), parameter s allows to fine–tune the attraction of the compo-
nents towards the principal components of X , and thus creates a continuum
between PCR and PLSR. Whenever X is not of full column rank, it should
be replaced by the set of its principal components associated with non-zero
eigenvalues. SCGLR was then refined by Bry et al. (2014, 2016, 2018).

3.6 A few words about hybrid methods

Recently, some methodologies involving both penalty–based regularisa-
tion and component building have been developed. For instance, Fort and
Lambert-Lacroix (2005) have proposed to sequentially combine PLS regression
with a ridge–penalised estimation of a logistic model (Eilers et al., 2001). Their
method is a sequence of two steps.

1. A ridge–penalised logistic regression of the binary response y is carried
out on the explanatory variables X . At the convergence, this yields a
working variable z∞ and a weighting matrixW∞.
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2. A PLSR of z∞ on X is then carried out with respect to the weighting
matrixW∞, yielding explanatory components.

More recently, Durif et al. (2017) have extended this technique to explana-
tory variable selection by replacing the PLS step by an adaptive version of
the sparse PLS proposed by Chun and Keleş (2010). However, although the
methods developed by Fort and Lambert-Lacroix (2005) and Durif et al. (2017)
greatly stabilise the estimation process, it would appear that they suffer from
a drawback similar to that of PLS–GLR. Indeed, the sequential nature of their
methods does not allow to properly take into account the estimation weights
since they are never updated.

Mention can also be made of the recent work by Bouveyron et al. (2018),
whose purpose is to build sparse PCA components in such a way that all com-
ponents have the same sparsity structure. Such sparse principal components
could be conveniently used for regressing the responses.

3.7 Discussion

As suggested in this chapter, the range of methods available for the regu-
larisation of a GLM is very wide. However in this thesis, we want to focus on
situations where the many explanatory variables involved are seen as proxies
to one or more phenomena that must be recovered and interpreted. In this
context, the component–based regularisation is undoubtedly the most appro-
priate method, because the components are intended to reconstruct the latent
variables that underlie the proxies. The useful part of the information con-
tained in the explanatory variables is thus summarised in a small number of
dimensions, without using a variable selection strategy that makes no sense in
our context. The decomposition of the linear predictor on these interpretable
orthogonal components facilitates the interpretation of the model, through the
facility of such visual diagnoses as component planes.

However, as recalled in Chapter 2, PCR and PLSR do not always focus
on the most important directions in X that best explain y (see for instance
Frank and Friedman, 1993). We will not attempt here to improve the PCR or
the PLSR by adding an extra sparsity criterion, especially since such work has
already been done many times. By contrast, our work will consist in consider-
ing a more flexible version of the PCR/PLSR–like methods, which avoids the
pitfall described in Chapter 2, and extending it to the broader framework of
mixed models. Following the works by Marx (1996) and Bry et al. (2013), we
will focus on regularisation methods based on the construction of Supervised
Components.
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4.1 Introduction

All the regularisation methods presented so far in Chapter 3 are based
on a strong assumption: the independence of observations. However, many
applications (e.g in biology, epidemiology, social science and economy) often
have to deal with panel data, for which we must take account of the depen-
dence induced by repeatedly measuring an outcome on each individual over
time, or grouped data with an even more complex dependency structure. In
such situations, as the independence assumption of observations is no longer
valid, the introduction of random effects in models is widespread. Hence the
need to consider Generalised Linear Mixed Models (GLMMs). For the most
general distribution assumptions in such models, parameter estimation faces
the intractability of the likelihood expressed as an integral with respect to the
random effects. Specific approximate methods must thus be implemented.

The chapter is organised as follows. After a reminder of the random ef-
fect concept, we provide a description of GLMMs in Section 4.2. Then, a brief
state–of–the–art of approximate methods for GLMM parameter estimation is
presented in Sections 4.3 to 4.5. Finally, we discuss the use of the different
methods in Section 4.6.

4.2 Definition, assumptions and notations

Random effect. Statistical studies are mainly motivated by the detection of
data variability sources and their quantification. With its ANalysis Of VAri-
ance (ANOVA) model, Fisher was one of the forerunners in this field. His
strategy was to partition the different sources of variation using predefined
“fixed effect” factors, and thus to assess the significance of observed differ-
ences between averages of data subgroups. However, this model is limited:
when a factor contains a very large number of levels (or even an infinite num-
ber of levels), the statistical sampling of the experiment is unable to visit all of
them.

Incorporating random effects into the model is an answer to this pitfall.
More specifically, mixed models are a more elaborate way of studying data
variability by considering more diverse sources of variation. Two types of fac-
tors are considered.

I Fixed effect factors, with a finite number of levels that all occur in the
data. These levels are considered interesting in themselves since the goal
is to quantify the effect of each level on the variable of interest.
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I Random effect factors, with a usually infinite number of levels, of which
only a random sample occurs in the data. In this case, it does not matter
how each level affects the outcome of the experiment, but the interest is
rather in the variability generated by such a sampling of levels.

It is worth noting that the type of factor to consider depends on the con-
text, the questions of interest, and how the data is gathered (refer for example
to Kreft and De Leeuw, 1998, Section 1.3.3). Let us illustrate this remark with
a toy example. Consider a district with three high schools and imagine that a
parents’ association commissions a study to determine the effect of each high
school on obtaining the A level. In this case, the high schools considered are
interesting per se. The high school factor will then be seen as a fixed effect fac-
tor. On the other hand, if the study is conducted on a national scale — in order
to know to what extent the high school attended has an influence on obtaining
the A level —, it will certainly not be possible (or be too expensive) to take into
account all the high schools. Only a sample of them will be selected. Here,
the specific effects of the selected high schools are therefore not of interest any-
more, as they are seen as representatives of a much larger set of high schools.
In such a context, the high school factor is considered as a random effect factor.

This very simple example tried to clarify the notions of fixed and random
effect factors, knowing that in practice, modelling is often more complicated
and may involve cross effects. However, determining the nature (fixed or ran-
dom) of an effect is not always easy, perhaps because conflicting definitions of
“fixed effect” and “random effect” can be found in the literature (Gelman et al.,
2005). That is why, to avoid any ambiguity, we will adopt the conventional rule
proposed by Searle et al. (2009), Section 1.4:

« [...] the important question is that of inference: are the levels of the factor
going to be considered a random sample from a population of values?

“Yes” — then the effects are to be considered as random effects.
“No” — then, presumably, inferences will be made just about the levels

occurring in the data and the effects are considered as fixed effects.»

That being said, the introduction of random effects in modelling allows us to be
more precise on the origin of total variation compared to statistical modelling
without random effects. Indeed, this variation is divided into two parts: that
due to random effects and that due to errors. Mixed models are ultimately
used to estimate fixed effects, but also to identify and quantify the different
sources of variation, notably through the estimation of variance components.

Another important aspect of random effects is that they can be seen as
a way of capturing some dependence between observations. In the case of re-
peated measures on several individuals for example, two observations coming
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from the same individual are more likely to be similar to each other than two
observations coming from two different individuals. In other words, observa-
tions from the same individual are generally correlated and non–independent.
In such a situation, including an “individual” random effect in the model links
the observations associated with the same realisation of the random effect,
which will induce a particular covariance structure between these observa-
tions. Overall, in addition to providing fixed–effect estimates, mixed models
take into account possible complex dependence structures between statistical
units.

Notations for random effects. Throughout this work, the vector of random
effects will be denoted ξ. Generally speaking, ξ is a q–dimensional vector com-
posed of Q subvectors so that ξ =

(
ξT

1, . . . , ξ
T
Q

)T, where Q is the number of ran-
dom effects involved in the model. Each ξj is a qj–dimensional random effect
vector, where qj is the number of realisations of the jth random effect observed
in the data. So we have

∑Q
j=1 qj = q, with q the total number of random levels.

The known design matrix of random effects will be denoted U . With n the
number of statistical units, we can write U = [U1 | . . . |UQ], where Uj is the
(n× qj)–design matrix associated with the jth random effect.

GLMM assumptions. GLMMs are based on assumptions similar to those for
GLMs, except that they involve reasoning conditional on random effects. For a
complete description of GLMMs, we refer the reader to McCulloch and Searle
(2004). We will keep here the same notations for the vector of fixed–effect pa-
rameters β and its associated design matrix X , both introduced in Chapter 3.
We just recall that y = (y1, . . . , yn)T is the observed response, which is a realisa-
tion of random vector Y = (Y1, . . . , Yn)T. The following three assumptions are
made.

(H′1) Conditional on random effects, the Yi’s are independent and have a dis-
tribution belonging to the exponential family. With the notations defined
in Section 3.2, the conditional density function of Yi given ξ can then be
written as

p
(
yi|ξ ; θξi

)
= exp

{
yiθ

ξ
i − b

(
θξi
)

ai(φ) + c(yi, φ)
}
.

Note that there is a link between the conditional expectation and the con-
ditional variance of vector Y since we have

V (Y |ξ) = Diag
(
ai (φ) v

(
µξi
))

i=1,...,n
,

where µξi is the ith element of vector µξ := E (Y |ξ) and v = b′′ ◦ b′−1.

— 76 —



4.2. Definition, assumptions and notations

(H′2) Unlike GLMs, linear predictor ηξ of a GLMM contains a random part. It
is expressed as a combination of the fixed and random effects:

ηξ = Xβ +Uξ.

(H′3) Link function g (·) relates random vector Y to the linear predictor
through

ηξ = g
(
µξ
)
.

As with GLMs, link g (·) must be strictly monotonic and twice–
differentiable.

Likelihood of GLMM. Even if some authors relax the assumption that ran-
dom effects are normally distributed (Lee and Nelder (1996) indeed suggest
other distributions such as gamma, inverse-gamma or beta), we keep here the
most commonly assumed Gaussian distribution:

∀j ∈ {1, . . . , Q} , ξj ∼Nqj (0,Dj) .

Since the present work cares about modelling variance–components, we fur-
ther assume

Dj = σ2
jGj ,

where Gj is a known (qj × qj)–matrix and σ2
j the variance component relative

to the jth random effect, which has to be estimated. Subvectors ξ1, . . . , ξQ being
assumed independent, the distribution of random–effect vector ξ writes

ξ∼Nq (0,Dσ) ,

where variance–covariance matrixDσ is a block diagonal matrix:

Dσ = bDiag (Dj)j=1,...,Q = bDiag
(
σ2
jGj

)
j=1,...,Q .

Note that the variance–covariance matrix is indexed by σ = (σ1, . . . , σQ) to
stress the fact that it is parameterised by variance components only.

It is emphasised that a GLMM is correctly defined only conditional on random
effects. More precisely, since we only know the response distribution condi-
tional on random effects, the likelihood function of the parameters is expressed
through the integral

L (β,σ;y) =

∫
Rq

n∏
i=1

p (yi|ξ;β,σ) p (ξ;σ) dξ, (4.1)
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where p (ξ;σ) denotes the density function of random vector ξ. Choosing the
canonical link provides a more explicit form for the likelihood function:

L (β,σ;y) =

∫
Rq

exp
{
yTηξ − 1Tb

(
ηξ
)

a(φ) + 1Tc (y, φ)
}
×

exp
(
−1

2ξ
TD−1

σ ξ
)

(2π)q/2 |Dσ|1/2
dξ.

(4.2)

However, except for a few special models such as Linear Mixed Models
(LMMs, or Gaussian–identity), beta–binomial or Poisson–gamma (see for in-
stance Lee et al. (2017) or Molenberghs et al. (2010)), Y does not have a closed–
form marginal distribution. Therefore, as pointed out for instance by Trot-
tier (1998), under the most general assumptions, there is no single reference
method for estimating fixed effects and variance components of a GLMM. To
deal with the integral with respect to the random effects’ distribution in (4.1)
or (4.2), three approaches can be mentioned:

I numerical integrations (quadrature) and analytic approximations of the
likelihood,

I Monte Carlo (MC) integrations and indirect MC–based likelihood max-
imisations,

I linearisation methods.

As there does not appear to be a consensus on any of the approaches, Sec-
tions 4.3 to 4.5 are devoted to a brief review of them.

4.3 Numerical approximations

There are essentially two types of numerical approximations in our con-
text: numerical integrations (Section 4.3.1) and methods based on an analytic
approximation of the integrand (Sections 4.3.2 and 4.3.3).

4.3.1 Gauss–Hermite quadrature and adaptive version

Quadrature is based on the fact that an integral can be interpreted as an
infinite weighted sum. It then approximates an integral by a finite weighted
sum of the integrand evaluated at specified points within the domain of inte-
gration. The best choices of weights and points essentially depend on the type
of integrand. The two most common types of quadrature used for GLMMs are
Gauss–Hermite quadrature (GHQ) and an adaptive version of it (AGHQ).
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The unidimensional case. With t ∈ R, GHQ rules (Liu and Pierce, 1993,
1994) are designed to evaluate integrals of the form

I =

∫
R

exp
(
−t2
)
f(t) dt,

where f(·) is a sufficiently regular function to be well approximated by a poly-
nomial. The approximations provided take the form

I ' ÎM =
M∑
m=1

vm f(tm), (4.3)

where:

I M is the number of quadrature points,

I t1, . . . , tM are the quadrature points (abscissas), defined as the M roots of
the M th Hermite polynomial which writes

HM(x) = (−1)M exp
(
x2

2

)(
dM

dxM exp
(
−x2

2

))
,

I v1, . . . , vM are the associated weights given by

vm = 2M−1M !
√
π

M2 (HM−1(tm))2 .

ForM 6 20, the quadrature points and corresponding weights can be found in
Abramowitz and Stegun (1964), while the algorithm described in Golub and
Welsch (1969) allows to calculate them when M > 20. The accuracy of the
method depends on the number of quadrature points: the higher M , the better
the approximation of the integral. With this in mind, R package fastGHQuad
presented in Blocker et al. (2014) allows a fast and numerically–stable compu-
tation of quadrature rules with more than 1000 points.

Unidimensional Gaussian density. In many applications, the following in-
tegral must be calculated:

J =

∫
R

ϕµ,σ(t) f(t) dt,

where ϕµ,σ(·) refers to the density function of the Gaussian distribution with
expectation µ and standard deviation σ. As shown in Naylor and Smith (1982),
the GHQ–approximation of J is given by

ĴM =
M∑
m=1

v∗m f(t∗m), (4.4)
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where t∗m = µ + σ
√

2 tm and v∗m = vm√
π

. The quadrature points defined in (4.3)

are therefore linearly transformed according to the values of µ and σ, and the
initial weights are simply divided by

√
π. In (4.4), weights v∗m’s and quadrature

points t∗m’s are said to be based on weight function ϕµ,σ(·).

Application to GLMMs. For illustration, suppose that we have a simple
GLMM with only one q–dimensional random effect ξ = (ξ1, . . . , ξq)T such that
ξ∼Nq (0, σ2Iq). In this simplified case, the likelihood function writes

L
(
β, σ2;y

)
=

q∏
i=1

ni∏
j=1

∫
R

ϕ0,σ (ξi) p (yij|ξi) dξi =
q∏
i=1

∫
R

ϕ0,σ (ξi)
ni∏
j=1

p (yij|ξi) dξi︸ ︷︷ ︸
Ki

,

where ni is the number of observations associated with the ith realisation of the
random effect. A variable change within the integral to a standard Gaussian
variable (by defining ξ̃i = ξi/σ), leads to another expression of the likelihood
contribution from the ith cluster:

Ki =

∫
R

ϕ0,1

(
ξ̃i

) ni∏
j=1

p
(
yij|σξ̃i

)
dξ̃i.

Applying the GHQ described in (4.4) provides

L
(
β, σ2;y

)
'

q∏
i=1

{
M∑
m=1

v∗m

ni∏
j=1

p(yij|σt∗m)
}
, (4.5)

where t∗m =
√

2 tm and v∗m = vm√
π

. Anderson and Aitkin (1985) were probably

the first to apply the GHQ to evaluate and maximise the likelihood function
in a logistic regression model with one random effect. Unfortunately, even for
a large number of quadrature points, it may not be possible to approximate
the GLMM likelihood accurately with GHQ, the approximation errors being
amplified by large clusters and high random effects variances. This is due to
the fact that in the GHQ, the quadrature points and weights are not adjusted
to the shape of the integrand.

AGHQ for GLMMs. The main idea of Adaptive Gauss–Hermite quadrature
(AGHQ) — see Pinheiro and Bates (1995) or Pinheiro and Chao (2006) for in-
stance — is to shift and rescale the quadrature points to lie under the peak of
the function to be integrated. To this end, instead of treating the prior den-
sity ϕ0,1

(
ξ̃i

)
as the weight function of the GHQ (as it was done in (4.5)), the
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proposal is to rewrite Ki as

Ki =

∫
R

ϕνi,τi

(
ξ̃i

) ϕ0,1

(
ξ̃i

)∏ni
j=1 p

(
yij|σξ̃i

)
ϕνi,τi

(
ξ̃i

) dξ̃i,

where ϕνi,τi is a Gaussian density which approximates the posterior density of
ξi given the observed data. Treating this density as the weight function leads
to the definition of new quadrature points and associated weights{

tad
im = νi + τit

∗
m

vad
im = τi

√
2π exp

(1
2t
∗2
m

)
ϕ0,1

(
tad
im

)
v∗m

and to a more accurate likelihood approximation:

L
(
β, σ2;y

)
'

q∏
i=1

{
M∑
m=1

vad
im

ni∏
j=1

p(yij|σtad
im)
}
. (4.6)

Even if the AGHQ generally outperforms the GHQ with much fewer quadra-
ture points, it is much more computationally intensive. Indeed, the AGHQ
requires the computation of means νi’s and variances τ 2

i ’s of the Gaussian den-
sity which approximates the posterior, resulting in time–consuming iterative
calculations.

There are some extensions of the GHQ and the AGHQ to higher dimen-
sional random effects, essentially based on the Cartesian product quadrature.
Since it seems unnecessary to give a full description of these extensions here,
we simply refer the reader to Pan and Thompson (2003) and Rabe-Hesketh and
Skrondal (2004) for further details.

The main advantage of the AGHQ is that it can be made arbitrarily accu-
rate by increasing the number of quadrature points. The price to pay will be
computation time, higher and higher with the desired level of accuracy. The
main drawback is that as soon as the likelihood is not factorisable into low–
dimensional integrals, the numerical Gaussian quadrature may not be appli-
cable. It is the case, for example, for correlated, crossed and nested random
effects, greatly reducing the scope of the method.

4.3.2 Laplace approximation

Proposed by Tierney and Kadane (1986), the Laplace method is particu-
larly adapted to approximate integrals of the form

I =
∫

Rq
eS(u) du, (4.7)
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where S(·) is a regular function. The procedure starts with the expansion
of S (u) as a second–order Taylor series around its mode ũ. The fact that
∇S (ũ) = 0 provides

S (u) ' S(ũ) + 1
2 (u− ũ)T

[
HS (ũ)

]
(u− ũ) , (4.8)

where ∇S and HS refers to the gradient and the Hessian matrix of S respec-
tively. Then, putting back (4.8) into (4.7) leads to the approximation

I ' ÎLa = eS(ũ)

∫
Rq

exp
{

1
2 (u− ũ)T

[
HS (ũ)

]
(u− ũ)

}
du

= eS(ũ)

∫
Rq

exp
{
−1

2 (u− ũ)T
[
−HS (ũ)

]
(u− ũ)

}
du

= eS(ũ)(2π)q/2 |−HS (ũ)|−1/2 .

Laplace approximation applied to GLMM estimation. Now, let R (ξ) :=
log [p (y|ξ) p (ξ)]. The likelihood function of a GLMM (4.1) can be rewritten
as

L (β,σ;y) =
∫

Rq
eR(ξ) dξ.

Subsequently, let ξ̃ denote the conditional mode of random effects, namely
ξ̃ = arg max

ξ∈Rq
R (ξ). The Laplace approximation of the likelihood in then given

by

L (β,σ;y) ' (2π)q/2
∣∣∣−HR

(
ξ̃
)∣∣∣−1/2

exp
[
R
(
ξ̃
)]
. (4.9)

Maximisation of (4.9) yields estimates β̂ and σ̂ for β and σ. But it should
be stressed that unlike quadrature methods, the Laplace approximation can
not be made arbitrarily accurate. As a result, the estimates obtained can not be
made arbitrarily close to maximum likelihood estimates. That is why β̂ and σ̂
are often called “approximate maximum likelihood estimates” in the literature.
GLMM estimation by both Laplace and AGHQ methods can be done using the
R package (R Core Team, 2017) lme4 (Bates et al., 2015).

Even if they are derived from an analytical approximation of the likelihood, the
estimates obtained by maximising the Laplace approximation of the likelihood
work reasonably well in many situations. However, they are prone to some
bias towards zero when the conditional response distribution is highly non–
normal and when the variances of random effects are large (McCulloch, 1997).
That is why enhanced versions of the Laplace approximation have been devel-
oped, notably by Shun and McCullagh (1995) and Raudenbush et al. (2000).
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Based on higher–order Taylor series expansion, they allow to reduce this bias
and also to deal with high dimensional integrals.

Note that AGHQ is equivalent to Laplace approximation when only one
quadrature point is used. AGHQ is therefore generally more accurate. How-
ever, Laplace approximation is still applicable for correlated, crossed and
nested random effects, which could explain its prevalence. In Section 4.3.3, we
present one of the most popular approximate maximum likelihood approaches
related to the Laplace approximation: the Penalised Quasi–likelihood (PQL).

4.3.3 Penalised Quasi–Likelihood

The Penalised Quasi–Likelihood (PQL) method presented by Breslow and
Clayton (1993) is based on a Laplace approximation (as presented in Sec-
tion 4.3.2) of the marginal quasi–likelihood function defined by

Q (β,σ;y) = cte× |Dσ|−
1
2

∫
Rq

exp
{
−1

2

n∑
i=1

di

(
yi, µ

ξ
i

)
− 1

2ξ
TD−1

σ ξ

}
dξ,

(4.10)

which is obtained by integrating the conditional quasi–likelihood of Y given ξ
with respect to the distribution of ξ. In (4.10), di

(
yi, µ

ξ
i

)
is defined by

di

(
yi, µ

ξ
i

)
= −2

∫
µξi

yi

yi − t
ai(φ)v(t) dt,

so that it can be interpreted as a deviance measure of fit, also referred to as
“quasi–deviance”. We can rewrite the marginal quasi–likelihood functionQ as

Q (β,σ;y) = cte× |Dσ|−
1
2

∫
Rq
e−k(ξ) dξ,

where

k(ξ) = 1
2

n∑
i=1

di

(
yi, µ

ξ
i

)
+ 1

2ξ
TD−1

σ ξ.

Then, a second–order Taylor series around ξ̃ such that ∇k
(
ξ̃
)

= 0, provides
the following approximation:

Q (β,σ;y) ' cte× (2π)q/2︸ ︷︷ ︸
constant terms

|Dσ|−
1
2

∣∣∣Hk (ξ̃)∣∣∣−1/2
e−k(ξ̃). (4.11)
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Taking the log and ignoring the multiplicative constant terms in (4.11), the ap-
proximation yields

q (β,σ;y) := logQ (β,σ;y) ' −1
2 log |Dσ| −

1
2 log

∣∣∣Hk (ξ̃)∣∣∣− k (ξ̃) . (4.12)

Let us now recall that

k(ξ) = −
n∑
i=1

∫
µξi

yi

yi − t
ai(φ)v(t) dt+ 1

2ξ
TD−1

σ ξ, with

µξi = g−1
(
ηξi

)
= g−1 (xT

i:β + uT
i:ξ) .

So, the gradient and the Hessian matrix of k respectively write

∇k(ξ) = −
n∑
i=1

∂

∂ξ

∫
µξi

yi

yi − t
ai(φ)v(t) dt+D−1

σ ξ

= −
n∑
i=1

yi − µξi
ai(φ)v

(
µξi
) ∂g−1 (xT

i:β + uT
i:ξ)

∂ξ
+D−1

σ ξ

= −
n∑
i=1

(
yi − µξi

)
ui:

ai(φ)v
(
µξi
)
g′
(
µξi
) +D−1

σ ξ,

Hk(ξ) =
n∑
i=1

ui:u
T
i:

ai(φ)v
(
µξi
) [
g′
(
µξi
)]2 +D−1

σ

−
n∑
i=1

(
yi − µξi

)
ui:

[
∂

∂ξ

(
1

ai(φ)v
(
µξi
)
g′
(
µξi
))]T

.

The authors then ignore the last term of Hk(ξ), which has expectation 0 and
equals 0 for canonical link functions. (4.12) then becomes

q (β,σ;y) ' −1
2 log

(∣∣∣U TW ξ̃UDσ + Iq
∣∣∣)− k (ξ̃) , (4.13)

where W ξ̃ = Diag

[(
ai(φ) v

(
µξ̃i

) [
g′
(
µξ̃i

)]2
)−1

]
i=1,...,n

. Assuming that W ξ̃

varies slowly as a function of the parameters, the first term of (4.13) is ig-
nored. Therefore, the maximisation of function q can be reduced to the joint–
maximisation (i.e. with respect to β,σ and ξ) of the log–PQL function defined
by Green (1987) as

log PQL (β,σ;y) = −k (ξ) = −1
2

n∑
i=1

di

(
yi, µ

ξ
i

)
− 1

2ξ
TD−1

σ ξ. (4.14)
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Note that (4.14) is known as the penalised log–quasi–likelihood function since a

penalty term, namely −1
2ξ

TD−1
σ ξ, has been added to the log–quasi–likelihood

of a GLM defined by Wedderburn (1974) (see Section 3.3.2). Based on (4.14),
the iterative process suggested for estimating fixed–effect parameters and vari-
ance components is the same as Schall’s (see Section 4.5.1 for a in–depth de-
scription). This is why these two methods are sometimes considered as one
and the same method.

As the PQL approach of Breslow and Clayton (1993) uses the Laplace ap-
proximation, its advantages and drawbacks are essentially those discussed at
the end of Section 4.3.2. Its wide spectrum of applications explains why it is
still the most widely used method for GLMM estimation, not to mention that
the method is also quite computationally fast (Venables and Ripley (2002), R
package MASS). However, since estimates from the PQL method can be biased
in certain situations (e.g. for binary data or when the number of observations
within each level of random effect is small), some bias correction techniques
have been proposed. In a non–exhaustive manner, we refer the reader to Bres-
low and Lin (1995), Goldstein and Rasbash (1996), and Kuk (1995).

4.4 Stochastic approximations

Two categories of stochastic approximations can be considered in our con-
text: indirect maximisation of the likelihood via MC–based methods (typically
based on stochastic variants of the EM algorithm, see Section 4.4.1) and MC–
based methods that approximate posterior distributions (Section 4.4.2) or the
entire likelihood (Section 4.4.3).

4.4.1 Monte Carlo EM algorithm

The EM algorithm (see Dempster et al. (1977) and Chapter 6, Section 6.3
for a more detailed description) is a popular and often efficient approach for
computing maximum likelihood estimates, in the context of missing data or
latent variables. Considering random effects ξ as missing data, let `c denote
the complete log–likelihood. Let also Eξ|y

[
· |θ[t]

]
be the expectation with re-

spect to the conditional distribution of ξ given y at the current value θ[t], where
θ = (β,σ) refers to the set of unknown parameters composed of fixed–effect
parameters and variance components. The general formulation of the EM al-
gorithm is recalled in Algorithm 4.1.
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Algorithm 4.1: The EM algorithm.

Start with an initial guess θ[0] and set t = 0
while some convergence criterion not reached do

E–step: Compute Q
(
θ |θ[t]

)
= Eξ|y

[
`c (θ;y, ξ) |θ[t]

]
M–step: Set θ[t+1] = arg max

θ
Q
(
θ |θ[t]

)
t← t+ 1

end

Unfortunately, since the conditional distribution of ξ given y is generally
unknown in the GLMM context, alternative strategies have been developed to
face the intractability of objective function Q. One of them is the Monte Carlo
EM algorithm, initially developed by Wei and Tanner (1990) and later refined
by McCulloch (1994) and McCulloch (1997) in the GLMM context.

Principle of the method. The idea proposed by McCulloch (1997) is to sim-
ulate random draws from the conditional distribution of ξ given y by using a
Metropolis–Hastings scheme (Hastings, 1970; Robert and Casella, 2013), and
then approximate the Q–function by Monte Carlo integration. Algorithm 4.2
summarises this strategy.

Algorithm 4.2: The MCEM algorithm.

Start with an initial guess θ[0] and set t = 0
while some convergence criterion not reached do

Metropolis–Hastings scheme: Generate M values, namely
ξ(1), . . . , ξ(M), from the conditional distribution of ξ|y knowing
current parameter value θ[t].

E–step: Compute QMC
(
θ |θ[t]

)
= 1
M

M∑
m=1

`c
(
θ;y, ξ(m)

)
M–step: Set θ[t+1] = arg max

θ
QMC

(
θ |θ[t]

)
t← t+ 1

end

Details on the Metropolis–Hastings algorithm involved. The aim is to ob-
tain a sequence of random samples from target density p (ξ|y). As an MCMC
method, the Metropolis–Hastings algorithm produces an ergodic Markov
chain

(
ξ(m))

m
whose stationary distribution is p (ξ|y). It requires the choice

of a proposal distribution, h (ξ), from which potential new values are drawn
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and an acceptance function, A (·, ·), which gives the probability of accepting
the new value. Let ξ(m) denote the mth draw from p (ξ|y). The (m + 1)th draw,
namely ξ(m+1), is then generated through the following transition kernel:

1. Generate a new value ξ∗k for the kth element of ξ as ξ∗k ∼ h (ξk).

2. Take

ξ(m+1) =


(
ξ

(m)
1 , . . . , ξ

(m)
k−1, ξ

∗
k, ξ

(m)
k+1, . . . , ξ

(m)
q

)T

with prob. A
(
ξ(m), ξ(m+1)

)
ξ(m) with prob. 1− A

(
ξ(m), ξ(m+1)

)
,

where

A
(
ξ(m), ξ(m+1)

)
= min

1,
p
(
ξ(m+1) |y

)
h
(
ξ(m)

)
p
(
ξ(m) |y

)
h
(
ξ(m+1)

)
 . (4.15)

Note that the ratio in (4.15) depends on the unknown conditional distribution
of ξ given y. McCulloch (1997) then suggests to choose the marginal distribu-
tion of the random effects, p (ξ), as the proposal distribution. The ratio indeed
simplifies to

p
(
ξ(m+1) |y

)
p
(
ξ(m)

)
p
(
ξ(m) |y

)
p
(
ξ(m+1)

) =
p
(
y | ξ(m+1)

)
���

���p
(
ξ(m+1)

)
��

�
��

p
(
ξ(m)

)
p
(
y | ξ(m)

)
��

�
��

p
(
ξ(m)

)
��

���
�

p
(
ξ(m+1)

)
=

∏n
i=1 p

(
yi | ξ(m+1)

)
∏n

i=1 p
(
yi | ξ(m)

) ,

and only depends on the conditional distribution of y given ξ. The main ad-
vantage of such an approach is that it ensures the convergence in distribution
of Markov chain

(
ξ(m))

m
to a random variable from ξ given y. However, it

should be stressed that the MCEM is very time–consuming because a large
number of simulations must be performed at each iteration of the EM. On top
of that, each Metropolis–Hastings requires a burn–in period where an initial
number of samples are thrown away.

4.4.2 Gibbs sampling approach

Just like the Metropolis–Hastings algorithm discussed in Section 4.4.1,
the Gibbs sampling approach can be viewed as an alternative strategy to
tackle the intractability of the likelihood by sampling from simpler condi-
tional distributions. Very often used in the Bayesian paradigm, it proves to
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be a powerful tool to obtain approximations of parameter posterior distri-
butions. Within this framework, the use of the Gibbs sampler for GLMMs
has been introduced by Zeger and Karim (1991). Given value ξ(m) for ξ, the
Gibbs sampler requires generating values according to the conditional distri-
bution p

(
β | ξ(m),y

)
. The authors then assume a flat prior for β, which implies

p
(
β | ξ(m),y

)
∝
∏n

i=1 p(yi | ξ), and approximate it by a particular Gaussian dis-
tribution. This approach was refined and extended by Clayton (1996), using
Metropolis–Hastings algorithms. Since their work, the development of new
MCMC–based methods for GLMMs has been flourishing, which gave rise to
numerous software packages to implement these techniques. The most popu-
lar one is probably the R package MCMCglmm developed by Hadfield (2010).
In this package, emphasis is placed onto reducing the computational cost, in
particular through the use of the C library CSparse for solving sparse linear
systems. Therefore, even if the full conditional density is not in a standard
form, models can be fitted in a rather reasonable amount of time.

The above methods have two main disadvantages. The first one is intrin-
sic to Bayesian methods: they require the specification of prior distributions for
the parameters — hard to determine for non–specialists —, which can greatly
impact the results. The second disadvantage is intrinsic to MCMC–based sta-
tistical inference methods: they assume that the outputs obtained are from the
distribution of interest, these outputs being then used to estimate the char-
acteristics of this distribution. However, despite the numerous convergence
diagnoses proposed in the literature, we can never be sure that the Markov
chain generated has converged towards the target distribution.

We will not give a more in–depth description of the GLMM Bayesian
approach here but we refer the reader to Hadfield (2010) and the references
therein for further details. The following section focuses instead on recent de-
velopments concerning direct approximations of the likelihood by importance
sampling–based Monte Carlo methods.

4.4.3 Monte Carlo likelihood approximation

In Section 4.3.1, we have presented deterministic numerical integration
approaches — Gauss–Hermite quadrature and adaptive version — to approx-
imate the likelihood of a GLMM which, it should be remembered, is expressed
as an integral with respect to the random effects’ distribution. Other integra-
tion techniques exist, but are based on simulations instead. The focus here will
be on a recent importance sampling method proposed by Knudson (2016). Let
us begin by briefly discussing the main issues of importance sampling.
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Reminder on importance sampling. Importance sampling is a particularly
relevant method to approach quantities of the form

I =
∫

Rd
φ(z)f(z) dz =: Ef [φ(Z)] , (4.16)

where Z ∈ Rd is a random vector with density f , and φ is a function. A natural
way to approach (4.16) is to generate z1, . . . ,zM from f and approximate this
expectation by the sample mean

Ef [φ(Z)] ' 1
M

M∑
m=1

φ(zm) =: Î1
M .

Importance sampling is rather based on an alternative representation of (4.16)
given by

Ef [φ(Z)] =
∫

Rd
φ(z)f(z)

h(z)h(z) dz = Eh
[
φ(Z)f(Z)

h(Z)

]
,

where function h — often called importance distribution — fulfils

supp(h) =
{
z ∈ Rd

∣∣h(z) > 0
}
⊃
{
z ∈ Rd

∣∣φ(z)f(z) 6= 0
}
.

Therefore, a second way to approximate (4.16) is to simulate y1, . . . ,yM from
h and take

Ef [φ(Z)] ' 1
M

M∑
m=1

φ(ym)f(ym)
h(ym) =: Î2

M .

As recalled for instance by Robert and Casella (2011), we know by the
strong law of large numbers that both estimators Î1

M and Î2
M almost surely

converge to I, provided that the latter is finite. The popularity of importance
sampling is due to the fact that it puts very little restriction on the choice of
instrumental density h, a practical requirement for h being that it should be
easy to sample from. Assuming

Eh
[
φ(Z)f(Z)

h(Z)

]
<∞

Vh

[
φ(Z)f(Z)

h(Z)

]
<∞,

a good idea may be to choose the importance distribution h∗ that minimises the
variance of Î2

M . Unfortunately, the optimal importance distribution obtained
requires the knowledge of I and thus can not be used in practice. However,
heuristics have been developed (see Robert and Casella (2013) and Rubinstein
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and Kroese (2016) for instance) whose goal is to propose an importance distri-
bution such that

Vh

(
Î2
M

)
< Vf

(
Î1
M

)
.

In most cases, the available knowledge on the target density is very limited:
identifying h that is easy to sample from and that provides a good approxi-
mation of I remains a delicate problem. But in some situations, adaptive or
sequential versions of the importance sampling can be derived (Tokdar and
Kass, 2010).

Application to GLMMs. Recall that the likelihood function of a GLMM can
be expressed as an integral over the random effects of the joint density of ran-
dom effects and response vectors:

L (β,σ;y) =
∫

Rq
p (y, ξ) dξ. (4.17)

Considering an importance sampling distribution for the random effects, h(ξ),
we can rewrite (4.17) as

L (β,σ;y) =
∫

Rq

p (y, ξ)
h (ξ) h (ξ) dξ = Eh

(
p (y, ξ)
h (ξ)

)
,

where h > 0 on Rq in general. An approximation of the entire likelihood func-
tion is then given by

L (β,σ;y) ' L̂M (β,σ;y) = 1
M

M∑
m=1

p (y, ξm)
h (ξm) , (4.18)

where ξ1, . . . , ξM are vectors of length q drawn from a distribution with density
h. It should be emphasized that the method approximates the entire likelihood
function, that is why it is called “Monte Carlo Likelihood Approximation”
(MCLA). Unlike MCEM which exclusively focuses on maximum likelihood,
the approximation provided by MCLA — namely (4.18) — can be used for any
likelihood–based inference.

General properties of MCLA for GLMMs have been studied by Sung et al.
(2007). But their approach only involves importance distributions that are in-
dependent from the observed data. In theory, this assumption is not restrictive
because any importance distribution such that its support contains the sup-
port of the target distribution can be chosen. In practice, however, construct-
ing importance distributions independently of the observed data may require
extremely long computing time to obtain a reasonable approximation of the
likelihood. To counter this problem, the work of Knudson (2016) consists in
constructing a family of sampling distributions depending on the observed
data such that
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(i) it performs well in practice,

(ii) it reduces the computational cost,

(iii) it has attractive theoretical properties.

The importance sampling distribution she suggests is a mixture of three distri-
butions that can be written

h(ξ) = α1p1(ξ) + α2p2(ξ) + α3p3(ξ), (4.19)

where α1 + α2 + α3 = 1. More precisely in (4.19),

I p1(·) is a multivariate Student distribution with expectation 0 and scale
matrix determined by the Penalised Quasi–Likelihood (PQL) estimates
of the variance components,

I p2(·) is a normal distribution centred at the PQL estimates of the random
effects and with a variance matrix depending on the PQL estimates of the
variance components,

I p3(·) is also a normal distribution with the same expectation, but with a
variance matrix based on the Hessian of the PQL.

Note that the first component of the mixture, p1(·), is essential to guarantee
that the gradient of the MCLA has a central limit theorem. If α1 > 0, as M
increases to infinity, the quantity

√
M
[
∇L̂M (β,σ;y)−∇L (β,σ;y)

]
converges in distribution to a Gaussian distribution with mean 0 and finite
variance for every (β,σ) and every y. That is why in practice, α1 must be
strictly positive. The two other terms are included more for technical reasons
and to reduce the computational burden.

The method is implemented in the R package glmm (Knudson, 2015), and
tested on two real data sets: the Salamander data set (McCullagh and Nelder,
1989) and the Radish data set (Ridley and Ellstrand, 2010). In the first data
set, the response is binary while it is a count in the second. As highlighted
in Knudson (2015), the results produced by the R package glmm seem close
to those produced by the MCEM and those produced by the R package lme4.
The method seems to reduce the PQL bias but unfortunately, no simulation
study is provided to confirm this.
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4.5 Linearisation methods

4.5.1 Schall’s estimation approach

The strategy proposed by Schall (1991) consists in mixing the estimation
approaches used for GLMs on the one hand and for LMMs on the other. Its
strength lies in the fact that no specification is required concerning the distri-
bution or the model of the random effects. Initially, the GLMM is considered
conditional on the random effects, thus allowing a linearisation of the model
via the introduction of a working variable. The underlying linearised model is
then seen as an LMM: parameter estimation is performed by solving Hender-
son’s mixed model equations (Henderson, 1975).

Linearisation step. Given random effects ξ, the first order Taylor approxima-
tion of g(y) near µξ is given by

g(y) ≈ g
(
µξ
)

+
(
y − µξ

)
g′
(
µξ
)

= ηξ +
(
y − µξ

)
g′
(
µξ
)
.

As in the GLM estimation procedure, working variable zξ is defined by

zξ = Xβ +Uξ + e,

where e =
(
y − µξ

)
g′
(
µξ
)
. This leads Schall (1991) to consider the conditional

linearised modelMξ given by

(Mξ) : Zξ = Xβ +Uξ + e,

for which
E
(
Zξ
∣∣ξ) = Xβ +Uξ,

V
(
Zξ
∣∣ξ) = V (e|ξ)

= V
[(
Y − µξ

)
g′
(
µξ
) ∣∣ ξ]

= Diag
([
g′
(
µξi
)]2

V (Yi|ξ)
)
i=1,...,n

=: W ξ−1
.

Estimation step. In a second step, Schall (1991) considers modelMξ more as
an LMM, with

E
(
Zξ
)

= Xβ,

V
(
Zξ
)

= UDσU
T +W ξ−1

. (4.20)
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At first sight, (4.20) seems inconsistent since the first term of the sum takes
into account the random nature of ξ while the second is conditional on ξ. The
use ofW ξ−1 instead of E

(
W ξ−1

)
can nevertheless be justified by the fact that

parameter estimates can be obtained by solving the Henderson’s equations
associated with model Mξ. Indeed, these equations are based on the joint
distribution of

(
Zξ, ξ

)
, seen as the product of the conditional distribution of

Zξ|ξ and the distribution of ξ. And in the normal approximation of Zξ|ξ, it is
matrix thatW ξ−1 that is involved, not E

(
W ξ−1

)
. The Henderson’s equations

mentioned above take the form(
XTW ξX XTW ξU
U TW ξX U TW ξU +D−1

σ

)(
β
ξ

)
=
(
XTW ξ zξ

U TW ξ zξ

)
. (4.21)

Once random effects predictions are obtained, maximum likelihood (ML) —
or restricted maximum likelihood (REML) — estimates of the variance com-
ponents are available. Algorithm 4.3 describes in detail the resulting iterative
process.

4.5.2 Engel and Keen’s method

The method proposed by Engel and Keen (1994) is also an iterative pro-
cedure alternating between a model linearisation step and an estimation step.
It differs from Schall only in the estimation step of the linearised model, since
they consider modelMξ as an LMM with

E
(
Zξ
)

= Xβ,

V
(
Zξ
)

= V
[
E
(
Zξ
∣∣ξ)]+ E

[
V
(
Zξ
∣∣ξ)]

= UDσU
T + E

(
W ξ−1

)
. (4.23)

Estimation of fixed–effect parameters and variance components can then be
achieved with Algorithm 4.3, but replacingW ξ−1 with E

(
W ξ−1

)
.

This procedure seems to be more consistent because (4.23) involves the
“true” marginal variance of the working variable. In other words, the ran-
domness of ξ is really taken into account in the marginal model structure. Un-
fortunately, this method is not always directly usable: although E

(
W ξ−1

)
is

easy to compute in the case of a canonical link (Lavergne and Trottier, 2000),
it is not always analytically calculable (e.g. binomial distribution with probit
link).
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Algorithm 4.3: Schall’s algorithm.

Start with an initial guess β[0], ξ[0], σ[0] and set t = 0
while some convergence criterion not reached do

1. Update the working variable. Given linear predictor
ηξ

[t] = Xβ[t] +Uξ[t], set µξ [t] = g−1
(
ηξ

[t]
)

and define the working
variable as

zξ
[t] = ηξ

[t] +
(
y − µξ [t]

)
g′
(
µξ

[t]
)

2. Define the conditional linearised model as(
Mξ [t]

)
: Zξ [t] = Xβ +Uξ + e[t],

with residual variance matrixW ξ [t]−1
defined as

W ξ [t]−1
= Diag

([
g′
(
µξi

[t])]2
ai(φ) v

(
µξi

[t]))
i=1,...,n

3. Solve the Henderson’s system(
XTW ξ [t]

X XTW ξ [t]
U

U TW ξ [t]
X U TW ξ [t]

U +D[t]
σ

−1

)(
β
ξ

)
=
(
XTW ξ [t]

zξ
[t]

U TW ξ [t]
zξ

[t]

)
(4.22)

to get β[t+1] and ξ[t+1].

4. Variance components estimates. ∀j ∈ {1, . . . , Q}, set

• For ML, σ2
j

[t+1] =

qj − Trace
(
G−1
j C

[t]
j

)
σ2
j

[t]

−1

ξ
[t+1]
j

T
G−1
j ξ

[t+1]
j ,

where C [t] =
(
U TW ξ [t]

U +D[t]
σ

−1)−1
, C [t]

j being the jth sub–matrix

of C [t] associated with the jth random effect.

• For REML, σ2
j

[t+1] =

qj − Trace
(
G−1
j C

[t]
j

)
σ2
j

[t]

−1

ξ
[t+1]
j

T
G−1
j ξ

[t+1]
j ,

where C
[t]

is the matrix formed by the last q rows and columns
of the inverse of the Henderson system matrix in (4.22), C

[t]
j being

the jth sub–matrix of C
[t]

.

t← t+ 1
end
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A brief discussion on linearisation and competing methods is given in Sec-
tion 4.6.

4.6 Discussion

Because of the intractability of the likelihood, we have seen that various
approximate methods have been developed in order to estimate GLMM pa-
rameters. Each of these methods has its own advantages and drawbacks.

Deterministic numerical integration methods (GHQ, AGHQ) and Monte
Carlo integration methods (MCLA, MCMC) have two main advantages. First,
these methods provide approximations of the entire likelihood (not just the
maximum likelihood), which can be very useful for any other likelihood–based
inference (confidence interval, etc). Second, the accuracy level of these meth-
ods can be arbitrarily high by increasing the number of quadrature points or
the number of total simulations. Unfortunately, this comes with a price: these
methods are computationally intensive, and especially cumbersome for high
dimensional random effects, nested random effects, or crossed random effects.
Moreover, once an approximation of the likelihood is obtained, it must be max-
imised. Obviously, this maximisation step is not always easy and may require
many additional computational resources. MCMC–type methods have other
intrinsic disadvantages, particularly in the assessment of convergence and in
the choice of prior distributions. As an indirect likelihood maximisation ap-
proach which does not attempt to construct an approximation of the entire
likelihood function, one would have thought that MCEM would be less time–
consuming. But the method requires the use of a Metropolis–Hastings sampler
at each iteration of the EM algorithm, resulting in a considerable computa-
tional cost.

Initially defined without any specification of the random effects distribu-
tion, Schall’s linearisation method (Schall, 1991) proves to be an interesting
alternative, because it is so much less time–consuming. This approach first ap-
peared to be awkward but was justified by many authors, who obtained the
same equations but with different reasoning. The first two examples we can
think of are the method of Wolfinger and O’Connell (1993) — which can be
seen as another linearisation method slightly extending Schall’s —, and the
PQL method of Breslow and Clayton (1993) — based on a Laplace approxima-
tion of the marginal quasi–likelihood (see Section 4.3.3). Lee and Nelder (1996)
also use Laplace approximation, within the broader framework of Hierarchi-
cal Generalised Linear Models (HGLMs), which incorporates GLMMs. In the
case of a GLMM, maximising the “h–likelihood” they introduce is equivalent
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to maximising the penalised quasi–likelihood, and thus to solving the system
(4.21) suggested by Schall.

Finally, as initially emphasised by Stiratelli et al. (1984) in the specific con-
text of a random effect model with a binary response, Schall’s method can also
be justified from a Bayesian point of view. Let p (β |B) be the normal prior dis-
tribution of β with variance matrix B and p (ξ |Dσ) the centred normal prior
distribution of ξ with dispersion matrix Dσ. Let p (y |β, ξ) be the conditional
density of y. The posterior density for β and ξ satisfies

p (β, ξ |y,B,Dσ) ∝ p (y |β, ξ) p (β |B) p (ξ |Dσ) . (4.24)

Now, under a non–informative (or diffuse) prior for β, i.e. when B−1 = 0,
(4.24) becomes

p (β, ξ |y,B,Dσ) ∝ p (y |β, ξ) p (ξ |Dσ) .

The posterior log–likelihood is then, up to a constant, the sum of log [p (y |β, ξ)]
and log [p (ξ |Dσ)]. Recall that the conditional density of y is in the exponen-
tial family by assumption. Using some results from McCullagh and Nelder
(1989) relative to exponential families, Schall (1991) finally shows that mixed
model equations (4.21) constitute an iteration of the Fisher’s scoring method
to maximise p (β, ξ |y,B,Dσ) with respect to β and ξ.

Even if the Schall’s method proves to work reasonably well in many situa-
tions, it is known to exhibit downward bias when the conditional distribution
of the response is highly non–normal as is the case for binary data. Other es-
timation strategies should then be considered, such as Monte Carlo methods.
The latter require much longer computing time but in case of binary data, the
estimates provided are likely to be more accurate.

Despite its disadvantages, Schall’s method will be used a lot throughout
this work, mainly for its ease of implementation, speed and good results in
most cases. In addition, as we will see in Chapter 5, Schall’s method provides
us with a linear setting more suitable for the computation of components we
want to implement. Estimating the variance components accurately will in-
deed be an issue secondary to us: even if it means refining the parameter esti-
mation in a second step — using sophisticated simulation methods for instance
— our primary and main purpose will be to investigate the explanatory struc-
ture of the GLMM’s fixed design and relate it to interpretable dimensions.
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V

Component–based regularisation of
multivariate GLMMs

Do the best you can until you know better.
Then, when you know better, do better.

— Maya Angelou
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Chapter 5. Component–based regularisation of multivariate GLMMs

5.1 Introduction

In hindsight, it seems that many applications (in ecology or social sciences
to cite just a few of the countless areas involved) require facing three difficulties
together.

(i) First, responses may be non–Gaussian ;

(ii) second, observations may be clustered ;

(iii) last, it often happens that the true explanatory dimensions are latent and
indirectly measured through highly correlated proxies.

As mentioned in Chapter 4, items (i) and (ii) involve the use of GLMMs. On
the other hand, item (iii) demands the development of specific regularisation
techniques. In a non–exhaustive way, essentially two penalised–based reg-
ularisation methods have been proposed in the GLMM framework. With a
view towards variable selection, Schelldorfer et al. (2014) and Groll and Tutz
(2014) simultaneously developed L1–penalty approaches for fitting potentially
high–dimensional GLMMs. Both are based on a Laplace approximation of the
likelihood but each uses a particular optimisation algorithm. Furthermore, for
Gaussian responses only, Eliot et al. (2011) extended the ridge regression to
LMMs using L2–penalised EM algorithm.

However, in the situation of interest where the explanatory variables are
considered as proxies to latent dimensions which have to be recovered, none of
the methods mentioned above is satisfactory. Indeed, variable selection via the
LASSO is inappropriate, because it tends to select a single predictor among a
set of correlated ones and ignore the others. By preserving all the explanatory
variables in the model, the ridge–based approach seems more appropriate, but
unfortunately leads to a linear predictor that is difficult to interpret.

In the situation described by item (iii), the most appropriate approach is
undoubtedly the component–based regularisation. However, to the best of
our knowledge, no component–based regularisation method for GLMMs is
currently available. In addition, neither of the two penalty–based methods
discussed above is designed for multivariate responses, let alone for multi-
variate responses of different types (e.g. one binary and another Poisson),
when it is often necessary in many cases. To fill these gaps, it proved nec-
essary to develop a method allowing modelling grouped responses through
a multivariate GLMM with a large number of explanatory variables. For this
purpose, we combine Schall’s iterative model linearisation with regularisation
at each step. However, we do not use a penalty on the coefficient vector’s
norm — as proposed by Zhang et al. (2017) within the framework of multi-
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variate count data. We rather propose to combine dimension–reduction and
predictor–regularisation using supervised components aligning on the most
predictive and interpretable directions in the explanatory space. As an ex-
tension of the Supervised Component–based Generalised Linear Regression
(SCGLR), the main purpose still remains to investigate the explanatory struc-
ture and link it to interpretable dimensions.

The chapter is organised as follows. In Section 5.2, we formalise the model
and set the main notations used throughout the chapter. In Section 5.3, we
present the key features of a slight improvement of SCGLR that includes addi-
tional explanatory variables. Section 5.4 designs an extension of this methodol-
ogy to mixed models, and particularly to grouped data. In Section 5.5, our ex-
tended method, “mixed–SCGLR”, is evaluated through simulations and com-
pared to ridge– and LASSO–based regularisations. In order to highlight the
power of mixed–SCGLR in terms of model interpretation, Section 5.6 presents
an application to real data in the Poisson case. In this application, we aim
at modelling abundances of several tree genera with multiple redundant ex-
planatory variables. The land–plots on which the measures are collected are
grouped into forest concessions. Finally, Section 5.7 discusses the positive
points, limitations and possible improvements of mixed–SCGLR. In addition,
Appendix 5.8 presents some technical details useful for an overall understand-
ing of the method.

5.2 Model definition and notations

In the framework of a multivariate GLMM, we consider q response–
vectors y1, . . . ,yq forming matrix Y n×q, to be explained by two categories
of explanatory variables. The first category consists of few weakly corre-
lated variables An×r =

[
a1 | . . . | ar

]
. These variables are assumed to

be interesting per se and their marginal effects need to be precisely quanti-
fied. The second category consists of abundant and highly correlated variables
Xn×p =

[
x1 | . . . | xp

]
considered as proxies to latent dimensions which

must be found and interpreted. Since explanatory variables inA are few, non–
redundant and of interest, they are kept as such in the model. By contrast,
X may contain several unknown structurally relevant dimensions K < p im-
portant to model and predict Y , how many we do not know. X is thus to
be searched for an appropriate number of orthogonal components that both
capture relevant structural information inX and contribute to model Y .

This work addresses grouped data: the n observations form N groups.
Within each group, observations are not assumed independent. For each re-
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sponse yk, a N–level random effect ξk is used to model the dependence of
observations within each group. Hence, each yk is modelled with a GLMM
assuming a conditional distribution from the exponential family.

For the sake of clarity, here are the notations and conventions that will be
used throughout the chapter:

I As earlier, bold lowercase letters (e.g. u) refer to vectors and bold capital
letters (e.g. M ) refer to matrices. The transpose ofM is notedM T.

I All variables (namely the ai’s, xj’s and yk’s) will be identified with n–
vectors.

I Let u,v ∈ Rd and M be a symmetric positive semi–definite matrix of
size d× d. The Euclidean norm of uwith respect to metricM will be de-
noted ‖u‖M , and the Euclidean scalar product of u and v will be denoted
〈u |v 〉M = uTMv. If u and v are non–zero vectors,

cosM (u,v) = 〈u |v 〉M
‖u‖M ‖v‖M

refers to their cosine with respect to M . When M = Id, we will simply
write ‖u‖, 〈u |v 〉 and cos (u,v).

I The space spanned by vectors u1, . . . ,uh is denoted by span {u1, . . . ,uh}.
U being any matrix, span {U} refers to the space spanned by the column–
vectors of U .

I Let Rn be endowed with metric W and let Z be a matrix of size n ×
p. Then ΠW

span{Z} refers to the W –orthogonal projector onto span {Z}.
Similarly, when W = In, we will simply denote Πspan{Z}. Let b be a
vector in Rn. The cosine of the angle between b and span {Z}with respect
toW is defined by cosW (b, span {Z}) = cosW

(
b, ΠW

span{Z}b
)

.

5.3 SCGLR with additional explanatory variables

In this section, we consider the situation where each yk is modelled with
a GLM (without random effect). For the sake of simplicity, we focus on the
single–component SCGLR (K = 1). Section 5.3.1 briefly recalls the useful stan-
dards of a univariate GLM. Section 5.3.2 defines the linear predictors consid-
ered in the SCGLR methodology, in a multivariate GLM framework with ad-
ditional explanatory variables. Finally, Section 5.3.3 introduces the criterion
which SCGLR maximises to compute the component.
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5.3.1 Notations and main features of univariate GLMs

We refer the reader to McCullagh and Nelder (1989) for a thorough
overview of GLMs. This section is only intended to recall the classical itera-
tive scheme performing maximum likelihood (ML) estimation. Let X denote
the n × p matrix of explanatory variables and β the p–dimensional parameter
vector. At iteration t+1, the Fisher Scoring Algorithm (FSA) for ML estimation
calculates

β[t+1] =
(
XTW [t]X

)−1
XTW [t]z[t], (5.1)

where z[t] and W [t] respectively denote the classical working variable and the
associated weight matrix at iteration t (see Sections 3.2 and 3.3.1). As pointed
out by Nelder and Wedderburn (1972), update (5.1) may be interpreted as a
weighted least squares step in the linearised modelM[t] defined by

M[t] :

∣∣∣∣∣∣∣∣∣
z[t] = Xβ + ζ [t],

with:

E
(
ζ [t]
)

= 0,

V
(
ζ [t]
)

= W [t]−1
.

(5.2)

5.3.2 Linear predictors for SCGLR with multiple responses

We are now considering a multivariate GLM (Fahrmeir and Tutz, 1994).
In this context, SCGLR searches for an explanatory component common to all
the yk’s. This component will be denoted f and its p–dimensional loading–
vector will be denoted u, so that f = Xu. The linear predictor associated with
response–vector yk then writes

ηk = (Xu) γk +Aδk, (5.3)

where γk and δk are the regression parameters associated respectively with
component f and additional explanatory variables A. f being common to all
the yk’s, predictors are collinear in their X–part. For identification purposes,
we impose uTM−1u = 1, whereM may so far be any p× p symmetric positive
definite matrix. Let us note yk,i the i–th observation of the k–th response–vector
and H = {ηk,i | 1 6 k 6 q, 1 6 i 6 n} the predictor set. We assume that the q
responses are independent conditional on any linear combination ofX andA,
and that the n observations are independent. The log–density then writes

` (Y |H) =
n∑
i=1

q∑
k=1

`k (yk,i|ηk,i) ,
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where `k is the log–density of the k–th response, conditional on its linear pre-
dictor. As a result, zk being the working variable associated with yk and W−1

k

its variance matrix, the corresponding linearised model derived from the FSA
at iteration t is

M[t]
k :

∣∣∣∣∣∣∣∣∣
z

[t]
k = (Xu) γk +Aδk + ζ [t]

k ,

with:

E
(
ζ

[t]
k

)
= 0,

V
(
ζ

[t]
k

)
= W

[t]
k

−1
.

(5.4)

Although linearised models (5.2) and (5.4) seem very similar, (5.4) is no
longer linear, owing to the product uγk. An alternated version of the FSA
must therefore be used:

(i) Given current values of all the γk’s and δk’s, a new loading–vector u is
obtained by solving an SCGLR–specific program (see Section 5.3.3 for
details).

(ii) Given a current value of u, each zk is regressed independently on
[
Xu |

A
]

with respect to weight matrixWk, yielding new regression parameter
estimates γk and δk.

5.3.3 Calculating the component: an SCGLR–specific criterion

For an easier reading of this part, we omit the [t] index. For each k ∈
{1, . . . , q}, consider model Mk endowed with weight matrix Wk. The best
loading–vector in the weighted least–squares sense would be the solution of
(Bry et al., 2013):

min
u:uTM−1u=1

q∑
k=1

∥∥∥zk − ΠWk

span{Xu,A}zk

∥∥∥2

Wk

⇐⇒ max
u:uTM−1u=1

q∑
k=1

∥∥∥ΠWk

span{Xu,A}zk

∥∥∥2

Wk

.

The maximisation program also writes max
u:uTM−1u=1

ψA (u), where

ψA (u) =
q∑

k=1

∥∥zk∥∥2
Wk

cos2
Wk

(
zk, span {Xu,A}

)
=

q∑
k=1

∥∥zk∥∥2
Wk

cos2
Wk

(
zk, ΠWk

span{Xu,A}zk

)
. (5.5)
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Now, ψA is a mere goodness–of–fit (GoF) measure that does not take into ac-
count the closeness of component f = Xu to interpretable directions in X .
The GoF measure, ψA, must therefore be combined with a measure φ of struc-
tural relevance (SR).

Assume matrix X consists of p standardised numeric variables. Consider
a weight system ω = {ω1, . . . , ωp} — e.g. ωj = 1

p
∀j ∈ {1, . . . , p} — reflecting

the a priori relative importance of variables. Also consider a weight matrix P
— e.g. P = 1

n
In — reflecting the a priori relative importance of observations.

We define the most structurally relevant loading–vector as the solution of

max
u:uTM−1u=1

φ (u) ,

where

φ (u) =
[

p∑
j=1

ωj
(
〈Xu |xj 〉2P

)l] 1
l

=
[

p∑
j=1

ωj

(
uTXTPxjx

T
jPX u

)l] 1
l

, l > 1,

(5.6)

for the scalar product is commutative. Formula (5.6) is in fact a particular case
of the SR criterion proposed by Bry et al. (2016). It can be viewed as a gener-
alised average version of the usual dual PCA criterion:

∑p
j=1 cos2

P (Xu,xj) =∑p
j=1 〈Xu |xj 〉

2
P . For M = (XTPX)−1, (5.6) is called “Variable–Powered In-

ertia” (VPI). It should be stressed that for XTPX to be invertible, X must be
a full column rank matrix. In case of strict collinearities within X , as always
happens in high–dimensional settings, we replace X with the matrix C of its
principal components associated with non–zero eigenvalues. Bry et al. (2018)
and Appendix 5.8.1.3 provide further details on the use of principal compo-
nents in VPI whenXTPX is singular.

Tuning parameter l allows to draw component towards more (greater l) or
less (smaller l) local bundles of correlated variables, as depicted on Figure 5.1
in the particular instance of four coplanar variables. Informally, a bundle is a
set of variables correlated “enough” to be viewed as proxies to the same latent
dimension. The notion of bundle is flexible, and parameter l tunes the level
of within–bundle correlation to be considered: the higher the correlation, the
more local the bundle. Overall, taking l = 1 draws the components towards
global structural directions (namely the principal components) while taking l
higher leads to more local ones (ultimately, the variables themselves). The goal
is to focus on the most interpretable directions.

Finally, let s ∈ [0, 1] be a parameter tuning the importance of the SR rela-
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Figure 5.1 – Polar representation of the VPI according to the value of l in the elemen-
tary case of four coplanar variables, x1,x2,x3,x4, with ωj = 1

4 ∀j ∈ {1, 2, 3, 4}.
Loading–vector u is identified with complex number eiθ, where θ ∈ [0, 2π). Curves zl (θ) :=[
φ
(
eiθ
)]l

eiθ are graphed for l ∈ {1, 2, 4, 10, 50}. The intersection of curve zl with f = Xu

has a radius equal to
[
φ
(
eiθ
)]l. The red line is the direction of maximum for l = 1, which is in

fact the first principal component. These four variables are then regarded as a unique bundle.
By contrast, the blue lines represent the two directions of maximum for l = 4. The variables are
then seen as two bundles containing two variables each. Finally, when l = 50, each variable is
considered a bundle in itself.

tive to the GoF. SCGLR attempts a trade–off between (5.5) and (5.6) by solving

max
u:uTM−1u=1

{
J (u) := [φ (u)]s [ψA (u)]1−s

}
,

or equivalently

max
u:uTM−1u=1

{
logJ (u) = s log [φ (u)] + (1− s) log [ψA (u)]

}
. (5.7)

Although criterion J may seem unconventional, it brings out a clear inter-
pretation of trade–off parameter s. Indeed, at the maximum, relative variations
compensate since we have

∇ logJ (u) = 0

⇐⇒ s
∇φ (u)
φ (u) + (1− s)∇ψA (u)

ψA (u) = 0

⇐⇒ ∇ψA (u)
ψA (u) = s

1− s

[
−∇φ (u)

φ (u)

]
.

Ratio s/(1− s) can therefore be interpreted as the marginal rate of substitution
of SR to GoF. Informally, it measures locally the number of additional units

— 104 —



5.4. Extension to mixed models

of GoF needed to compensate the loss of one unit of SR, in order to maintain
criterion J constant. For illustrative purposes, a few examples can be given:

I If s = 0.2, then ratio s/(1−s) = 0.25. In this case, GoF is considered more
important than SR, and one unit of SR can be substituted for only 0.25
unit of GoF.

I If s = 0.5, then s/(1 − s) = 1 which means that GoF and SR are equally
important.

I Finally, if s = 0.9, then s/(1− s) = 9. Here, SR is given more weight than
GoF so that 9 units of GoF are necessary to compensate the loss of one
unit of SR.

For an easier reading, this section was centred on a particular case of SR
called VPI. The general formula for structural relevance and other detailed
examples can be found in Appendix 5.8.1. Note also that analytical expression
of J (u) is derived in Appendix 5.8.2.

5.4 Extension to mixed models

We now propose to extend SCGLR to mixed models. This extension
will be called “mixed–SCGLR”. A particular focus is placed on grouped data,
for which the independence assumption of observations is no longer valid.
The within–group dependence of each response is modelled with a random
group–effect. Consequently, each yk is modelled with a GLMM. As in SCGLR,
the responses are assumed independent conditional on the components. Sec-
tion 5.4.1 presents the single–component mixed–SCGLR method. The under-
lying algorithm is given in Section 5.4.2. Considering only one component is
generally not enough to explain the responses making it necessary to search
for K explanatory components, with 1 6 K 6 rank (X). The way in which we
extract higher rank components is explained in Section 5.4.3.

5.4.1 First component

The random group–effect is assumed different across responses. This
leads to q random–effect vectors ξ1, . . . , ξq, which are assumed independent
and normally distributed:

∀k ∈ {1, . . . , q} , ξk
ind.∼ NN (0,Dk) ,
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where N denotes the number of groups. In this work, variance components
models will be considered. We assume Dk = σ2

k IN , where σ2
k is the group

variance component associated with response yk. Linear predictors involved
in mixed–SCGLR are expressed as

∀k ∈ {1, . . . , q} , ηξk = (Xu)γk +Aδk +Uξk, (5.8)

where U is the known random effect design matrix. Predictor ηξk epitomises
the way we capture the dependence between outcomes. Indeed, as component
f = Xu does not depend on k, it captures a structural dependence between
the various yk’s. By contrast, the random effect ξk models the within–group
stochastic dependence of outcomes forming response–vector yk.

The distribution of the responses conditional on the random effects is sup-
posed to belong to the exponential family. The FSA was adapted by Schall
(1991) to the GLMM dependence structure. The key idea is to extend Schall’s
algorithm to the component–based predictors in (5.8).

5.4.1.1 Linearisation step

Let gk denote the link function for response yk, g′k its first derivative andµξk
the conditional expectation (i.e. µξk := E (yk | ξk)). Working variable associated
with yk,i is calculated through

zξk,i = gk

(
µξk,i

)
+
(
yk,i − µξk,i

)
g′k

(
µξk,i

)
= ηξk,i + ek,i, where ek,i =

(
yk,i − µξk,i

)
g′k

(
µξk,i

)
.

In view of the conditional independence assumption, the conditional variance
matrix for zξk is

Var
(
zξk | ξk

)
= W ξ

k

−1 = Diag
([
g′k

(
µξk,i

)]2
ak,i(φk) vk

(
µξk,i

))
i=1,...,n

,

where ak,i and vk are known functions, and φk is the dispersion parameter re-
lated to yk. At iteration t, the conditional linearised model for working vector
zξk is then defined by

Mξ
k

[t] :

∣∣∣∣∣∣∣∣∣
zξk

[t] = (Xu) γk +Aδk +Uξk + e[t]
k

with:

E
(
e

[t]
k | ξk

)
= 0,

V
(
e

[t]
k | ξk

)
= W ξ

k

−1[t]
.

(5.9)
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Besides the variance component estimation, an alternated estimation step has
to be developed (as aforementioned in Section 5.3.2) to deal with the non–
linearity of (5.9).

5.4.1.2 Estimation step

Calculating the component: Given current values of all the γk’s, δk’s, ξk’s
and σ2

k’s, a new component f = Xu is calculated by solving a (5.7)–type pro-
gram. However, (5.5) has to be adapted to conditional linearised modelsMξ

k’s,
involving weight matricesW ξ

k ’s. The appropriate goodness–of–fit measure is

ψA (u) =
q∑

k=1

∥∥∥zξk∥∥∥2

W
ξ
k

cos2
W
ξ
k

(
zξk, span {Xu,A}

)
. (5.10)

Computing regression parameters and variance–component estimates:
Given a current value of component f , we apply Schall’s method with the
linear predictors given in (5.8). New values of parameters γk and δk as well as
new prediction ξk are obtained by solving the following Henderson’s system
(Henderson, 1975):f

TW ξ
k f f TW ξ

k A f TW ξ
k U

ATW ξ
k f ATW ξ

k A ATW ξ
k U

U TW ξ
k f U TW ξ

k A U TW ξ
k U +D−1

k


γkδk
ξk

 =

f
TW ξ

k z
ξ
k

ATW ξ
k z

ξ
k

U TW ξ
k z

ξ
k

 .

Finally, as mentioned by Schall (1991), given prediction ξ̂k for ξk, the update of
the ML estimation of variance component σ2

k is

σ2
k ←−

ξ̂k
T
ξ̂k

N − 1
σ2
k

Trace
[(
U TW ξ

k U +D−1
k

)−1
] .

5.4.2 The algorithm

The conditional linearised models considered at iteration t are given by
(5.9). Algorithm 5.1 describes the (t + 1)–th iteration of the single–component
mixed–SCGLR. It is repeated until stability of parameters is reached.
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Algorithm 5.1: The single component mixed–SCGLR algorithm
(generic iteration).

Step 1: Computing the component
With ψA (u) given by (5.10) and φ (u) by (5.6), set

u[t+1] = arg max
u:uTM−1u=1

[φ (u)]s
[
ψ

[t]
A (u)

]1−s

f [t+1] = Xu[t+1]

Step 2: Henderson systems
For each k ∈ {1, . . . , q}, solve the system

f [t+1]T
W ξ
k

[t]
f [t+1] f [t+1]T

W ξ
k

[t]
A f [t+1]T

W ξ
k

[t]
U

ATW ξ
k

[t]
f [t+1] ATW ξ

k

[t]
A ATW ξ

k

[t]
U

U TW ξ
k

[t]
f [t+1] U TW ξ

k

[t]
A U TW ξ

k

[t]
U +D[t]

k

−1


γk

δk

ξk

 =


f [t+1]T

W ξ
k

[t]
zξk

[t]

ATW ξ
k

[t]
zξk

[t]

U TW ξ
k

[t]
zξk

[t]


Call γ[t+1]

k , δ[t+1]
k and ξ[t+1]

k the solutions.

Step 3: Updating variance–component estimates
For each k ∈ {1, . . . , q}, compute

σ2
k

[t+1] = ξ
[t+1]
k

T
ξ

[t+1]
k

N − 1
σ2
k

[t] Trace
[(
U TW ξ

k

[t]
U +D[t]

k

−1)−1
]

D
[t+1]
k = σ2

k
[t+1]

IN

Step 4: Updating working variables and weighting matrices
For each k ∈ {1, . . . , q}, compute

ηξk
[t+1] = f [t+1]γ

[t+1]
k +Aδ[t+1]

k +Uξ[t+1]
k

µξk,i
[t+1] = g−1

k

(
ηξk,i

[t+1])
, i = 1, . . . , n

zξk,i
[t+1] = ηξk,i

[t+1] +
(
yki − µ

ξ
k,i

[t+1])
g′k

(
µξk,i

[t+1])
, i = 1, . . . , n

W ξ
k

[t+1] = Diag

({[
g′k

(
µξk,i

[t+1])]2
ak,i(φk) vk

(
µξk,i

[t+1])}−1
)
i=1,...,n

Incrementing: t←− t+ 1
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5.4.3 Extracting higher rank components

Let Fh =
[
f1 | . . . | fh

]
be the matrix of the first h components, where

h < K. An extra component fh+1 must best complement the existing ones
plusA, i.e. Ah =

[
Fh | A

]
. So fh+1 must be calculated usingAh as additional

explanatory variables. Moreover, we must impose that fh+1 be orthogonal to
Fh, i.e.

F T
hPfh+1 = 0.

Component fh+1 = Xuh+1 is thus obtained by solving

{
max s log [φ (u)] + (1− s) log [ψAh (u)]
subject to: uTM−1u = 1 and ∆T

hu = 0,
(5.11)

where ψAh (u) =
q∑

k=1

∥∥∥zξk∥∥∥2

W
ξ
k

cos2
W
ξ
k

(
zξk, span {Xu,Ah}

)
and ∆h = XTPFh.

In Appendix 5.8.3, we give a simple tool to maximise, at least locally, any
criterion on the unit sphere: the Projected Iterated Normed Gradient (PING)
algorithm. In particular, PING solves (5.11)–type programs, which give all
components of rank h > 1. The rank–one component is computed using the
same program withA0 = A and ∆0 = 0.

5.5 Simulation studies

Four simulation studies have been implemented to assess our method.
The first one (Section 5.5.1) focuses on LMMs, so with Gaussian responses. It
compares the performances of mixed–SCGLR, LMM–ridge (Eliot et al., 2011)
and GLMM–LASSO (Groll and Tutz, 2014; Schelldorfer et al., 2014). The sec-
ond simulation (Section 5.5.2) extends the first one to binary, Binomial and
Poisson outcomes, with comparison between mixed–SCGLR and GLMM–
LASSO. The third one (Section 5.5.3) assesses the performance of mixed–
SCGLR on a different explanatory bundle structure and presents results on
variance component estimates. The last simulation study deals with high di-
mensional data, and is presented in Chapter 7. All simulation studies have
been performed using R (R Core Team, 2017). To compute LASSO regres-
sions, we have used the R package glmmLasso (Groll, 2017). The extension
of SCGLR to mixed models has been implemented in the R package mixed-
SCGLR and is available at https://github.com/SCnext/mixedSCGLR.
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5.5.1 Simulation study with Gaussian outcomes

5.5.1.1 Data generation

To generate grouped data, we consider N = 10 groups and R = 10 ob-
servations per group (i.e. a total of n = 100 observations). The random effect
design matrix is given by U = IN ⊗ 1R. Explanatory variables X consist of
three independent bundles: X0 (15 variables), X1 (10 variables) and X2 (5
variables). Each explanatory variable is normally simulated with mean 0 and
variance 1. Parameter τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} tunes the level of redundancy
within each bundle: the correlation matrix of bundleXj is

cor (Xj) = τ1pj1T
pj

+ (1− τ)Ipj ,

where pj is the number of variables in Xj . In order to enable comparison
with LASSO and ridge, and to focus on regularisation, our simulations do not
involve additional explanatory variables (i.e. A = 0). Two random responses
Y =

[
y1 | y2

]
are generated as{

y1 = Xβ1 +Uξ1 + ε1

y2 = Xβ2 +Uξ2 + ε2,
(5.12)

such that y1 is predicted only by bundleX1, y2 only by bundleX2, while bun-
dle X0 plays no explanatory role. Our choice for the fixed–effect parameters
is

β1 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
15 times

, 0.3, .., 0.3︸ ︷︷ ︸
3 times

, 0.4, . . . , 0.4︸ ︷︷ ︸
4 times

, 0.5, .., 0.5︸ ︷︷ ︸
3 times

, 0, . . . , 0︸ ︷︷ ︸
5 times

)T,

β2 = ( 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
25 times

, 0.3, 0.3, 0.4, 0.5, 0.5 )T.

Finally, for each k ∈ {1, 2}, random effect and noise vectors are simulated
respectively from

ξk∼NN
(
0, σ2

k IN
)

and εk∼Nn
(
0, ω2

k In
)
,

where σ2
k = ω2

k = 1. For each value of τ , B = 100 samples are generated
according to Model (5.12).

5.5.1.2 Parameter calibration

In order to compare mixed–SCGLR with the ridge and LASSO regres-
sions, we recall the regularisation parameters required by each method. For
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both LMM–ridge and GLMM–LASSO methods, a unique shrinkage param-
eter has to be calibrated: λridge and λLASSO respectively. For mixed–SCGLR,
three tuning parameters need to be calibrated: the number of components, K,
the trade–off parameter, s, which are both regularisation parameters, and the
bundle–locality parameter, l. For greater clarity, the simulation focuses on the
behaviour of K and s. As recommended by Bry et al. (2013), we set l = 4. In
case–studies, l has to be tuned to maximise the interpretability of components.

For both mixed–SCGLR and GLMM–LASSO, optimal regularisation pa-
rameters are obtained through a 5–fold cross–validation, withdrawing 2 ob-
servations from each group every time. This could be termed “leave–
two–observations–out per group.” The data is thus divided into five parts
P1, . . . ,P5, each Pj containing 20 observations, 2 for each of the 10 groups. Let
y

(b)
k,i be the i–th observation of the k–th response vector in the b–th sample. Let

also ̂
y

(b)
k,i(−j) be the fit for y(b)

k,i with part Pj removed. The cross–validation error
in the b–th sample, E(b), is defined as

E(b) = 1
2

2∑
k=1

E
(b)
k , (5.13)

where

E
(b)
k = 1

5

5∑
j=1

√√√√ 1
20
∑
i∈Pj

(
y

(b)
k,i −

̂
y

(b)
k,i(−j)

)2

.

In the b–th sample, the optimal number of components, K?(b), the trade–off
parameter, s?(b), and the shrinkage parameter, λ?(b)LASSO, are selected to minimise
the cross–validation error (5.13). We then define

s? = 1
B

B∑
b=1

s?(b), K? = mode
({
K?(1), . . . , K?(B)

})
,

λ?LASSO = 1
B

B∑
b=1

λ?
(b)

LASSO.

By contrast, Eliot et al. (2011) suggest to calibrate the ridge parameter at each
step of their EM implementation, using the generalised cross–validation. We
thus define

λ?ridge = 1
B

B∑
b=1

λ?
(b)

ridge,

where λ?(b)ridge denotes the average of the ridge parameter values obtained over
all the iterations of the EM algorithm in the b–th sample.
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Table 5.1 summarises the optimal regularisation parameters selected
through cross–validation. In both ridge and LASSO, the shrinkage param-
eter value increases with the level of redundancy τ . Whereas for mixed-
SCGLR, when τ increases, K? decreases towards the true number of predictive
variable–bundles: the greater the value of τ , the better mixed–SCGLR focuses
on the structures inX that contribute to modelY . Moreover, when τ increases,
the trade–off parameter s? increases, meaning that regularisation requires a
greater importance of the structural relevance relative to the goodness–of–fit.

Table 5.1 – Optimal regularisation parameter values obtained through cross–
validation over 100 simulations.

GLMM–LASSO LMM–ridge mixed–SCGLR
shrinkage
parameter
λ?LASSO

shrinkage
parameter
λ?ridge

number of
components

K?

trade–off
parameter

s?

τ = 0.1 65 24 15 0.50
τ = 0.3 92 54 5 0.58
τ = 0.5 124 73 3 0.70
τ = 0.7 163 78 3 0.73
τ = 0.9 175 85 2 0.80

5.5.1.3 Comparison of estimate accuracies

Once tuning parameters are obtained, we focus on the fixed–effect esti-
mates’ accuracy. Since the response–vectors y1 and y2 are normally distributed
and have comparable orders of magnitude, the fixed–effect relative errors are
on the same scale. Then we consider a risk–averse comparison criterion called
“Mean Upper Relative Squared Error” (MURSE) defined as

MURSE (β1,β2) = 1
B

B∑
b=1

max


∥∥∥β̂(b)

1 − β1

∥∥∥2

‖β1‖2 ,

∥∥∥β̂(b)
2 − β2

∥∥∥2

‖β2‖2

 ,

where β̂
(b)
k is the estimate of βk associated with sample b.

The MURSE values for mixed–SCGLR, LMM–ridge and GLMM–LASSO
are presented in Table 5.2. The LMM results obtained without regularisation
are also presented. They were computed using the R package lme4 (Bates
et al., 2015). In the latter case, relative errors increase dramatically with τ .
Those of ridge and LASSO increase less drastically (but increase anyway) be-
cause these methods suffer from the high correlations among the explanatory
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variables. Except for τ = 0.1, mixed–SCGLR provides the most accurate fixed
effect estimates. Indeed, if there are no real bundles in X (τ ' 0), searching
for structures in X may lead mixed–SCGLR to be slightly less accurate. Con-
versely, mixed–SCGLR takes advantage of the high correlations among the ex-
planatory variables: the stronger the structures (high τ ), the more efficient the
method.

Table 5.2 – Mean Upper Relative Squared Error (MURSE) values associated with
the optimal parameter values.

LMM GLMM–LASSO LMM–ridge mixed–SCGLR(no regularisation)
τ = 0.1 0.12 0.05 0.08 0.12
τ = 0.3 0.33 0.12 0.13 0.10
τ = 0.5 0.61 0.20 0.16 0.07
τ = 0.7 1.32 0.25 0.20 0.06
τ = 0.9 4.62 0.26 0.31 0.05

5.5.1.4 Model interpretation

This section aims at highlighting the power of mixed–SCGLR for model
interpretation. Figure 5.2 presents an example of the first component planes
obtained for τ = 0.5, with associated optimal parameter values s? = 0.7 and
K? = 3. We still impose l = 4. The first two components obtained are the ones
which explain the responses. It clearly appears that y1 is explained by bundle
X1 and y2 by X2. Interestingly, although bundle X0 is the one with maxi-
mum inertia (26.83%), it appears only along the third component, for having
no explanatory part.

5.5.2 Additional simulations involving non–Gaussian out-
comes

5.5.2.1 Binary and Poisson outcomes

This section aims at assessing our method in the case of Bernoulli (B) and
Poisson (P) distributions of responses. We still consider N = 10 groups and
R = 10 observations per group. Design matrices X and U , as well as the
values of β1, β2, σ2

1 and σ2
2 , are still defined as in Section 5.5.1.1. The group

variance components are given by ς2
1 = 0.1σ2

1 and ς2
2 = σ2

2 so that for each
k ∈ {1, 2}, ξ̃k ∼ NN (0, ς2

k IN). Given ξ̃1 and ξ̃2, Y =
[
y1 | y2

]
is then
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Figure 5.2 – Component planes (1,2) and (1,3) given by mixed–SCGLR on simulated
Gaussian data. The black arrows represent the explanatory variables. The red ones represent
the projection of theX–part of the linear predictors associated with y1 and y2. The percentage
of inertia captured by each component is given in parentheses. For an easier model interpreta-
tion, our method hides the least relevant explanatory variables on each component plane with
a simple thresholding. Here, we hide all the predictors having cosine with the component plane
lower than 0.5.
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simulated as y1∼ B
(
p = logit−1

[
Xθ1 +Uξ̃1

])
y2∼P

(
λ = exp

[
Xθ2 +Uξ̃2

])
,

(5.14)

where θ1 = 0.1β1 and θ2 = β2.

Again, for each value of τ , B = 100 samples are generated according to
Model (5.14). As in Section 5.5.1.2, tuning parameters are calibrated so as to
minimise the cross–validation error (5.13). However, since y1 and y2 do not
have the same range of values, the prediction errors have to be standardised.
The cross–validation error for response yk in the b–th sample is now given by

E
(b)
k = 1

5

5∑
j=1

√√√√√√√√ 1
20
∑
i∈Pj

(
y

(b)
k,i −

̂
y

(b)
k,i(−j)

)2

v̂ar
( ̂
y

(b)
k,i(−j)

) .

In the same way, as the response vectors come from different distributions
and have different orders of magnitude, the fixed–effect relative errors are not
comparable. Unlike in Section 5.5.1.3, to compare mixed–SCGLR with GLMM–
LASSO and classical GLMM (without regularisation), we thus use the Mean
Relative Squared Error (MRSE) defined as

MRSE (θk) = 1
B

B∑
b=1

∥∥∥θ̂(b)
k − θk

∥∥∥2

‖θk‖2 , k ∈ {1, 2} ,

where θ̂
(b)
k is the estimate of θk from the b–th sample.

MRSE values for the GLMM, mixed–SCGLR and GLMM–LASSO are pre-
sented in Table 5.3. For all methods, estimating a Bernoulli model is obvi-
ously a more challenging task than estimating a Poisson model. Regardless
of the level of redundancy, τ , both mixed–SCGLR and GLMM–LASSO out-
perform classical GLMM estimation. Compared with the Gaussian case (Sec-
tion 5.5.1.3), the results deteriorate but overall, the same behaviours are ob-
served.

I For τ = 0.1, fixed–effect estimates provided by mixed–SCGLR are less
accurate than those provided by GLMM–LASSO. In this case, GLMM–
LASSO has indeed a double advantage. First, many θk,j’s are true ze-
ros. Unlike mixed–SCGLR, GLMM–LASSO often shrinks their estimates
to exactly zero. Second, since the level of redundancy is low, GLMM–
LASSO also provides accurate coefficient estimates of active variables.
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I By contrast, for τ > 0.3, mixed–SCGLR takes advantage of redundan-
cies within the explanatory variables. Thus, mixed-SCGLR outperforms
GLMM–LASSO in this case, despite the sparse structure of the θk’s.

Table 5.3 – Mean Relative Squared Error (MRSE) values obtained with Bernoulli
and Poisson responses.

GLMM GLMM–LASSO mixed–SCGLR(no regularisation)
Bernoulli Poisson Bernoulli Poisson Bernoulli Poisson

τ = 0.1 316.48 0.54 8.61 0.30 14.71 0.46
τ = 0.3 398.78 0.64 9.23 0.36 7.21 0.21
τ = 0.5 576.68 0.87 14.48 0.44 2.01 0.09
τ = 0.7 886.04 1.28 17.37 0.47 1.50 0.07
τ = 0.9 2840.10 3.72 17.24 0.59 1.31 0.05

Even if the response variables are not Gaussian, the power of mixed–
SCGLR for model interpretation is preserved. The component planes still re-
veal that y1 is explained by bundle X1 and y2 by X2. Figure 5.3 illustrates
what may happen when the level of redundancy is very high (τ = 0.7). Since
the explanatory variables are highly correlated, the mixed–SCGLR regularisa-
tion requires that the structural relevance be given a heavy weight with respect
to the goodness–of–fit, which leads to a trade–off parameter s close to 1 (s = 0.9
here). Having the greatest structural strength, the nuisance bundle is captured
by the second component despite its lack of explanatory power. This is some-
times the price to pay for the trade–off. Indeed, a higher within–bundle corre-
lation requires a stronger regularisation, hence a higher value of s. In return,
dimensions with a higher SR but lower GoF may be tracked first. In our ex-
ample, the second explanatory bundle is captured by the third component, so
that the predictive dimensions are accurately represented in component plane
(1, 3).

5.5.2.2 Binomial and Poisson outcomes

In this section, we simply extend the simulation scheme presented in Sec-
tion 5.5.2.1 to binomial and Poisson outcomes. We maintain design matricesX
andU as defined in Section 5.5.1.1. Fixed–effect parameters θk’s and random–
effect vectors ξ̃k’s are defined in Section 5.5.2.1. Given ξ̃1 and ξ̃2, we then
simulate Y =

[
y1 | y2

]
asy1∼ Bin
(

trials = 50 1n, p = logit−1
[
Xθ1 +Uξ̃1

])
y2∼P

(
λ = exp

[
Xθ2 +Uξ̃2

])
.
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Figure 5.3 – Example of component planes given by mixed–SCGLR in the
Bernoulli–Poisson case. In this example, the redundancy level is set to τ = 0.7 and the
optimal parameter triplet selected through cross–validation is (K, s, l) = (3, 0.9, 4). As pre-
viously, only the variables having cosine greater than 0.5 with the component plane are repre-
sented.
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Table 5.4 gives the Mean Relative Squared Error (MRSE) values for θ1 and
θ2 obtained on 100 samples for each value of τ . For the Poisson distribution,
the results are essentially identical to those in the previous simulation: mixed–
SCGLR outperforms GLMM–LASSO except for τ = 0.1. As for the binomial
distribution, the regularisation provided by mixed–SCGLR improves the re-
sults obtained without regularisation, regardless of the level τ of redundancy
within the explanatory variables. Unsurprisingly, the errors are much smaller
than in the binary case.

Table 5.4 – Mean Relative Squared Error (MRSE) values obtained with binomial
and Poisson distributions. The R package glmmLasso (Groll, 2017) does not handle bino-
mial outcomes but only Bernoulli ones, which precludes comparison in this case.

GLMM GLMM–LASSO mixed–SCGLR(no regularisation)
Binomial Poisson Binomial Poisson Binomial Poisson

τ = 0.1 2.31 0.50 NA 0.31 0.51 0.45
τ = 0.3 3.07 0.60 NA 0.33 0.28 0.18
τ = 0.5 3.93 0.75 NA 0.39 0.15 0.09
τ = 0.7 6.50 1.07 NA 0.40 0.10 0.07
τ = 0.9 19.29 2.71 NA 0.42 0.07 0.05

Figure 5.4 presents an example of the first component planes output by
mixed–SCGLR in the binomial/Poisson case with a rather low level of redun-
dancy (τ = 0.3 here). The component planes clearly reveal that y1 is explained
by bundleX1 and y2 byX2. As in the Gaussian simulation, predictive bundles
X1 and X2 are captured respectively by the first and the second components.
The third component aligns on noise bundleX0, despite its high inertia.

5.5.3 Simulations with a more complex variable–structure

This simulation study tests mixed-SCGLR on a slightly more complex
bundle structure. Results concerning variance component estimates are also
presented.

We consider a fixed–effect design matrix Xn×p partitioned into 3 blocks
G1, G2 and G3. Block G1 contains 10 predictive explanatory variables struc-
tured about a latent variableϕ1∼Nn (0, σ2

LVIn). Thus for each j ∈ {1, . . . , 10},
xj = ϕ1 + εj , where εj ∼ Nn (0, σ2

noiseIn) such that σ2
LV + σ2

noise = 1. The
correlation within G1 is tuned by signal to noise (StN) ratio σ2

LV/σ
2
noise (cho-

sen in
{1

3 , 1, 3
}

in practice). G2 contains a single predictive variable ϕ2 =
x11 ∼ Nn (0, In). G3 contains 20 unstructured noise variables: for each
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Figure 5.4 – Example of component planes given by mixed–SCGLR in the binomial–
Poisson case. In this example, the redundancy level is set to τ = 0.3 and the optimal parame-
ter triplet selected through cross–validation is (K, s, l) = (3, 0.5, 2). Again, only the variables
having cosine greater than 0.5 with the component plane are represented.

j ∈ {12, . . . , 31}, xj ∼Nn (0, In). For each k ∈ {1, 2, 3}, random–effect vectors
are simulated as ξk

ind.∼NN (0, σ2
k IN). Given ξ1, ξ2, ξ3, we simulate 3 responses

having different distributions, Y =
[
y1 | y2 | y3

]
, as


y1∼Nn

(
µ = α1ϕ1 +Uξ1, Σ = In

)
y2∼P

(
λ = exp

[
α2ϕ2 +Uξ2

])
y3∼ Bin

(
trials = 25 1n, p = logit−1

[
α3 (ϕ1 +ϕ2) +Uξ3

])
.

In our simulations, we set α1 = σ2
1 = 2, α2 = σ2

2 = 1 and α3 = σ2
3 = 0.5.

We consider in turn N = 10 and N = 50 groups, and R = 10 observations
per group (n = 100 and n = 500 observations in total). B = 100 samples
are generated for each pair of values (N, StN). The main goal of the study
is to assess the ability of mixed–SCGLR to track down both latent predictive
variables ϕ1 and ϕ2. For j = 1 and 2, we then define

corj = 1
B

B∑
b=1

∣∣∣cor
(
ϕj ,f

(b)
j

)∣∣∣ ,
where f (b)

j is the component most correlated with ϕj issued from mixed–
SCGLR in the b–th sample. Consistency of fixed–effect estimates is assessed
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through criteria err1, err2 and err3 defined by

errj = 1
B

B∑
b=1

∥∥∥αjϕj −Xβ̂(b)
j

∥∥∥2

‖αjϕj‖2 , j ∈ {1, 2}

err3 = 1
B

B∑
b=1

∥∥∥α3 (ϕ1 +ϕ2)−Xβ̂
(b)
3

∥∥∥2

‖α3 (ϕ1 +ϕ2)‖2 ,

where β̂
(b)
j is the fixed–effect estimate related to response yj associated with

sample b.

Table 5.5 – Summary of corj and errj values, and presentation of biases and stan-
dard errors of estimated variance components.

N = 10, R = 10 (n = 100) N = 50, R = 10 (n = 500)
σ2

LV/σ
2
noise

1
3 1 3 1

3 1 3
cor1 0.71 0.91 0.96 0.75 0.92 0.96
cor2 0.93 0.94 0.94 0.97 0.98 0.98
err1 0.47 0.15 0.06 0.38 0.13 0.05
err2 0.12 0.12 0.12 0.05 0.04 0.04
err3 0.19 0.14 0.11 0.11 0.07 0.04

bias
(
σ̂2

1

)
−0.02 −0.01 0.00 0.02 0.00 −0.02

sd
(
σ̂2

1

)
1.04 1.05 1.06 0.41 0.40 0.39

bias
(
σ̂2

2

)
−0.11 −0.08 −0.06 −0.06 −0.06 −0.06

sd
(
σ̂2

2

)
0.50 0.51 0.52 0.21 0.21 0.21

bias
(
σ̂2

3

)
−0.03 −0.04 −0.04 −0.02 −0.02 −0.02

sd
(
σ̂2

3

)
0.22 0.21 0.21 0.11 0.11 0.11

Table 5.5 summarises the values of the afore–defined criteria and presents
biases and standard errors of variance components estimates. For a given
value of N , cor1 increases towards 1 with ratio σ2

LV/σ
2
noise: the tighter the block

G1 is structured about its latent variable, the better mixed–SCGLR can recon-
struct it. The associated criterion err1 then naturally decreases towards 0. On
the other hand, cor2 and err2 are very stable, which proves that mixed–SCGLR
is able to detect an isolated predictive variable among a large number of irrel-
evant others. As err3 depends on how accurately mixed–SCGLR recovers ϕ1
and ϕ2, it slightly decreases when the StN ratio increases. Both variance com-
ponent biases and standard errors seem rather stable regardless of the value
of StN. Finally, when N increases, all the corj’s increase towards 1 and all the
errj’s decrease towards 0. As far as variance component estimates are con-
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cerned, the biases are getting slightly closer to 0 and the standard errors de-
crease significantly.

Model interpretation is revealed by Figures 5.5 in the case of N = 10
groups and R = 10 observations per group. The first component aligns with
block G1 which alone explains response y1. The second aligns with G2 (con-
taining single explanatory variable x11) which alone explains y2. Finally, note
that the projection of theX–part of the linear predictor related to y3 is well rep-
resented on component plane (1, 2). This indicates that y3 is explained jointly
by G1 and G2.
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Figure 5.5 – Examples of the first two–component planes given by mixed–SCGLR
when σ2

LV/σ
2
noise = 1/3 (top left), σ2

LV/σ
2
noise = 1 (top right), and σ2

LV/σ
2
noise = 3

(bottom). When StN ratio = 1/3 (resp. StN ratio ∈ {1, 3}), only the variables having cosine
greater than 0.4 (resp. 0.5) with component plane (1, 2) are represented.
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5.6 An application to forest ecology data

5.6.1 Data description

The present study is based on the Genus dataset of the CoForChange
project (see http://www.coforchange.eu). The subsample we consider
gives the abundance of 8 common tree genera on 2615 Congo Basin land plots.
These plots are grouped into 22 forest concessions. To predict abundances,
we have 56 environmental variables, plus 2 explanatory variables which code
geology and anthropogenic interference. X consists of all environmental vari-
ables which are:

I 29 physical factors linked to topography, rainfall or soil moisture,

I 25 photosynthesis activity indicators (the Enhanced Vegetation Indices,
EVI, the Near–InfraRed indices, NIR, and the Mid–InfraRed indices,
MIR),

I 2 indicators which describe the tree height.

Physical factors are many and redundant: monthly rainfalls are highly corre-
lated, and so are photosynthesis activity indicators. The correlation heatmap
indicating correlations among all environmental variables is presented on Fig-
ure 5.6. By contrast, geology and anthropogenic interference are weakly corre-
lated and interesting per se. These variables are then considered as additional
explanatory variables and included in matrixA.

5.6.2 Model and parameter calibration

Abundances of species given in Genus are count data. For each k ∈
{1, . . . , 8}, we consider a Poisson regression with log link

yk∼P

(
λ = exp

[
K∑
j=1

(Xuj) γk,j +Aδk +Uξk

])
, (5.15)

where ξk is the 22–level random–effect vector used to model the dependence
between the observations of yk within concessions. The first cross–validations
we performed — with different fixed values of parameters s and l — indicated
that four components were sufficient to capture most of the information in X
needed to model and predict responses. We therefore keep K? = 4. The op-
timal values of trade–off and locality parameter s? and l? are then determined
through another cross–validation.
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Figure 5.6 – Correlation heatmap of Genus explanatory variables. The blue color corre-
sponds to a correlation close to 1, the red color corresponds to a correlation close to −1 and the
white color corresponds to a correlation close to 0. It clearly appears several subsets of highly
positively correlated variables and a subset of highly negatively correlated variables.

Using the same procedure and notations as in Section 5.5.1.2, the data is
divided into five parts P1, . . . ,P5. Let nj be the size of Pj . The cross–validation
error is defined as

E = 1
8

8∑
k=1

Ek,

where

Ek = 1
5

5∑
j=1

√√√√ 1
nj

∑
i∈Pj

(
yk,i − ̂yk,i(−j))2

v̂ar
( ̂yk,i(−j)) . (5.16)

On Figure 5.7, we plot the errors E for parameter pairs (s, l) ∈ Es × El,
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where
Es = {0.025, 0.1, 0.2, . . . , 1}
El = {1, 2, . . . , 10, 12, 14, . . . , 30, 35, 40, 45, 50} .

Parameter grid Es × El therefore contains 264 pair values. Selecting the best
parameter pair from Es × El through a 5–fold cross–validation requires a com-
putation time of about 65 minutes (parallel computing on 6 CPU cores, In-
tel Core i7–6700HQ, 2.6GHz). It should be noted that there is a risk of non–
convergence when the trade–off parameter s is too close to 0. Indeed, if we
consider no structural information in X (s exactly equals 0), mixed–SCGLR
merely performs classical GLMM estimation and does not converge for this
data set. When s = 0.025, our algorithm converges but leads to fairly unsta-
ble estimates and high cross–validation errors because regularisation is then
very weak. By contrast, the components calculated with s ∈ {0.5, 0.6, . . . , 1}
are close to principal components. The associated errors are therefore stable
in most cases, but rather high. Finally, s ∈ {0.1, . . . , 0.4} leads to the lowest
cross–validation errors, but only for l 6 10. Indeed, when s is not too high,
mixed–SCGLR may focus on the most predictive structures of X . However,
parameter l must not exceed a certain value, in order to avoid being drawn to-
wards too local variable–bundles. As can be seen, choosing (s?, l?) = (0.1, 10)
minimises the cross–validation error.
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Figure 5.7 – Behaviour of the cross–validation error E. For each trade–off parame-
ter value in {0.025, 0.1, 0.2, . . . , 0.9, 1}, we plot the cross–validation error against bundle–
locality parameter l ∈ [1, 50].
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5.6.3 Prediction quality and interpretation results

This part evaluates the benefits obtained by taking within–group depen-
dence into account. The predictions we get with mixed–SCGLR and with the
initial version of SCGLR are compared with respect to the cross–validation
criterion given by (5.16). Table 5.6 summarises the Ek’s for both SCGLR and
mixed–SCGLR methods. Parameter value triplet (K?, s?, l?) = (4, 0.1, 10) is op-
timal for both methods. For each k ∈ {1, . . . , 8}, mixed–SCGLR gives a lower
cross–validation error than SCGLR: taking into account the within–group de-
pendence has clearly improved prediction performances.

Table 5.6 – Cross–validation errors for each response variable.

E1 E2 E3 E4 E5 E6 E7 E8

SCGLR 1.32 2.46 3.27 1.43 2.56 1.28 1.54 3.44
mixed–SCGLR 1.24 1.95 2.92 1.32 2.27 1.15 1.31 3.01

Moreover, mixed–SCGLR enables to correctly reconstitute observed abun-
dance maps, as illustrated on Figure 5.8.
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Figure 5.8 – Abundance maps issued from mixed–SCGLR. The plots respectively show
real abundance (left) and associated conditional predictions (right) of the tree species number
8. Each point represents a land plot (2615 in total).

As has been seen in Section 5.5.1.4, mixed–SCGLR allows an easy inter-
pretation of the model through the decomposition of linear predictors on in-
terpretable components. Figure 5.9 shows the first two component planes re-
sulting from mixed–SCGLR on real data Genus.
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Figure 5.9 – Component planes (1, 2) and (1, 3) output by mixed–SCGLR on dataset
Genus, with optimal parameter triplet (K?, s?, l?) = (4, 0.1, 10). The upper plot dis-
plays only variables having cosine greater than 0.7 with component plane (1, 2). The lower
one displays variables having cosine greater than 0.75 with component plane (1, 3).
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Component plane (1, 2) reveals two patterns. The first one is a global rain–
wind pattern driven by the pluvio’s and wd’s variables which explain the abun-
dances of species 1, 2, 5, 6. The second is a rather local pattern driven by vari-
ables altitude, wetness and annual pluviometry (pluvio_an) which prove impor-
tant to model and predict responses y3 and y7. Lastly, component 3 reveals
a photosynthesis pattern driven by a part of the Evi’s, which seems useful to
predict y4 and y8.

The decomposition of linear predictors on interpretable components al-
lows to detect the species that tend to share common explanatory dimensions
and those which are more idiosyncratic. We can then identify the variable–
bundles these dimensions are related to. The underlying goal is a better un-
derstanding of the bio– and ecosystem diversity with a view to preserve them.
Species 1, 2, 5 and 6 are sensitive to the same rain–wind regime, and species
4 and 8 are explained by the same photosynthetic pattern. On the contrary,
species 3 and 7 are clearly separated. Species 7 grows at high altitudes where
the atmosphere is rather dry while the abundance of species 3 is favoured by
regular rainfall and high humidity.

Finally, one clarification deserves to be emphasised: to make this section
easier to read, the model described by (5.15) does not take into account the
surface area of each plot. This model then inherently assumes that the sur-
face area is constant, which is not the case. All the results in this section were
actually obtained considering the surface area of each plot as an offset (see
Appendix 5.8.4 for more details).

5.7 Discussion and conclusions

Like Sufficient Dimension Reduction (SDR) methods (Li, 1991; Cook et al.,
2007; Adragni and Cook, 2009), mixed–SCGLR is based on the construction
of a reduction function of dimension less than p which tries to capture all the
relevant information that X contains about Y . However, the two approaches
do not exactly pursue the same objectives. Indeed, SDR methods look for the
“central subspace” containing the predictive information irrespective of the
structures within X (e.g. dimensions capturing a large part of X’s variance,
or bundles of correlated variables). Mixed–SCGLR rather aims at basing the
explanatory subspace on such structural dimensions so as to both gain inter-
pretability and stabilise prediction. We think that extracting a hierarchy of
strong and interpretable dimensions, and decomposing the linear predictor
on them, is an essential asset in model–building. The difference in goals en-
tails a difference in means: SDR is based on the sufficiency principle, which is
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enough to identify a subspace but not to track strong predictive dimensions in
it. By contrast, in the wake of PLS regression, mixed–SCGLR uses a criterion
combining goodness–of–fit and structural relevance of components.

The supervised–component paradigm has proved effective in situations
where regularisation is necessary but where variable selection is inappropriate
— for instance when the true explanatory dimensions are latent and indirectly
measured through highly correlated proxies.

I When l = 1, trade–off parameter s allows to continuously tune the at-
traction of components towards the principal components of explanatory
variables. This results in a continuum between classical GLMM estima-
tion (s = 0 is associated with no regularisation) and principal component
generalised linear mixed regression (with s = 1).

I When l > 1, we take better advantage of local predictive structures inX .
The components we build are then usually closer to local gatherings of
variables, thus easier to interpret.

Mixed–SCGLR is able to identify more or less local predictive structures
common to all the yk’s and performs well on grouped data with Gaussian,
Bernoulli, binomial and Poisson outcomes. Compared to penalty–based ap-
proaches as ridge or LASSO, the orthogonal components built by mixed–
SCGLR reveal the multidimensional explanatory and predictive dimensions,
and greatly facilitate the interpretation of the model.

However, a natural question arises as to the accuracy of our methodology
under significant deviations from normality. With binary data for instance,
variance components estimates are prone to some bias towards zero (McCul-
loch, 1997). As mentioned in Chapter 4, other estimation strategies might be
considered, especially Monte Carlo integration methods such as the Monte
Carlo Likelihood Approximation (MCLA) proposed by Knudson (2016). Their
advantage is that they provide estimates based on direct approximations of the
likelihood. Indirect maximisations of the likelihood are also available such as
Monte Carlo Expectation–Maximisation (MCEM) and Monte Carlo Newton–
Raphson, both introduced by McCulloch (1997). Alternatively, other meth-
ods are available within the Bayesian paradigm, such as the MCMC methods
developed by Hadfield (2010) and the Sequential Monte Carlo (SMC) sam-
pling approach proposed by Fan et al. (2008), both specifically designed for
the GLMM framework. We think that these methodologies and Schall’s could
be combined sequentially. Indeed we could first take advantage of the lin-
ear approximation of the model in order to build the components, and then
use MC–based methods to estimate both fixed–effect parameters and variance
components. This would lead to replacing the current iteration of mixed–
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SCGLR given by Algorithm 5.1 with the following steps (to keep things simple,
we take the canonical link and we assume the dispersion parameter constant
equal to 1):

Step 1. Compute components F =
[
f1 | . . . | fK

]
via the PING algorithm on

Schall’s linearised models.

Step 2. For each k ∈ {1, . . . , q}, consider the hierarchy

p
(
yk|ξk;γk, δk

)
= exp

{
yk

T
ηkξ − 1Tc

(
ηkξ

)
+ 1Td

(
yk
)}

ξk|Dk ∼ N (0,Dk) ,

where ηξk = Fγk +Aδk +Uξk, and c, d are the functions associated with
the natural parametrisation of the GLM. For example, for the Bernoulli–
logistic regression, we have: c(x) = log(1 + ex) and d(x) = 0.

Step 3. Apply MC–based methods such as MCMC, MCLA, MCEM or MCNR
to update γk, δk, ξk andDk, k ∈ {1, . . . , q}.

Step 4. Update working variables and weight matrices to define the new
Schall’s linearised models.

Even though such MC–based methods are computationally much more
intensive than the “Joint–Maximisation” approaches (e.g. Schall (1991) or Bres-
low and Clayton (1993)) and have intrinsic disadvantages (particularly in the
assessment of convergence and in the choice of prior distributions), they could
give better results in case of binary data.

5.8 Appendices

5.8.1 Structural relevance: general formula and examples

For an easier reading in Section 5.3.3, we focused on a particular case of
Structural Relevance (SR) measure called Variable–Powered Inertia (VPI). In-
deed in practice, VPI was the measure used in the simulation schemes (Sec-
tion 5.5) and real data study (Section 5.6). Introduced by Bry and Verron (2015),
the notion of SR actually covers a broad spectrum of measures, according to
the type of structure loading–vector u (or component f ) should align with.
Unlike estimation methods without regularisation — in which all directions
in span {X} are considered equally important — the introduction of SR into
the estimation process favours certain directions we see as stronger or more
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relevant (for instance directions correlated to local gatherings of variables, or
directions close to known interpretable subspaces, etc). Moreover, as we will
see, this measure perfectly extends to mixtures of numerical and categorical
explanatory variables. Section 5.8.1.1 presents the general formula of the SR
measure and Sections 5.8.1.2, 5.8.1.3 and 5.8.1.4 detail three particular exam-
ples associated with different goals that deserve attention.

5.8.1.1 General formula

Let X be a n× p design matrix of explanatory variables, endowed with a
p×pmetric matrixM whose purpose is to weightX’s variables appropriately.
As suggested by Bry et al. (2012), M may take various forms according to
the type of variables and structure of data. For identification purposes, the
loading–vector of any component f = Xu is constrained by: ‖u‖2

M−1 = 1.

Let us now recall the general formula of SR (Bry and Verron, 2015).
Consider a set ℵ of J “reference” symmetric positive semi–definite matri-
ces, namely ℵ = {N1,N2, . . . ,NJ}. Also consider a weight system ω =
{ω1, ω2, . . . , ωJ}, and a scalar l ∈ [1,+∞[. The associated SR measure, φℵ,ω,l,
is defined as the following two–degree homogeneous function of u:

φℵ,ω,l (u) =
(

J∑
j=1

ωj (uTNju)l
) 1

l

. (5.17)

The Nj’s are coding the directions of concern so that quadratic form uTNju
measures the closeness of vector u to a reference structure Sj . With the ad-
ditional constraint

∑J
j=1 ωj = 1, (5.17) expresses a generalised weighted aver-

age of quadratic forms {uTNju | j = 1, . . . , J}, and thus averages the closeness
measures of vector u to the associated reference structures.

As depicted in Section 5.3.3 for the VPI measure in the particular instance
of four coplanar variables (see Figure 5.1), parameter l can be viewed as a “bun-
dle locality parameter”. Indeed, the value of l tunes the “width” of the bundles
of directions considered relevant. The objective is then to focus on the most in-
terpretable bundles of directions. The analysis of (5.17) for the extreme values
of l allows a better understanding of the role of this parameter. The following
details are taken from Bry and Verron (2015). For convenience, we consider
here that ∀j ∈ {1, . . . , J} , ωj 6= 0.
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Lower extreme value. When l = 1, (5.17) writes

φℵ,ω,1 (u) =
J∑
j=1

ωju
TNju = uT

(
J∑
j=1

ωjNj

)
u. (5.18)

As (5.18) can be interpreted as some inertia, its maximisation leads to the first
eigenvector of the corresponding PCA. The directions having maximal struc-
tural relevance are thus the principal components of this PCA. The case where
the Nj’s are the orthogonal projectors on reference subspaces Sj’s and all ωj’s
are equal is of particular interest: it brings us back to the Generalised Canonical
Analysis (Kettenring, 1971) of the set of subspaces {Sj | j = 1, . . . , J}.

Upper extreme value. We now consider the case where l → +∞. For that,
the reasoning is based on the quantity

‖Nj‖ := sup
u:uTM−1u=1

uTNju.

Two sub–cases deserve attention.

I If ∃j? ∈ {1, . . . , J} : ∀j 6= j?, ‖Nj‖ < ‖Nj?‖, then

arg max
u:uTM−1u=1

φℵ,ω,∞ (u) = arg max
u:uTM−1u=1

uTNj?u.

In this case, the loading–vector umaximising φℵ,ω,∞ (u) will be drawn to
the subspace Sj? associated withNj? .

I If ∃λ ∈ Rp : ∀j ∈ {1, . . . , J} , ‖Nj‖ = λ, then the first eigenvector (associ-
ated with the maximum eigenvalue) of the Nj having maximum weight
ωj maximises φℵ,ω,∞ (u). If all the ωj’s are equal, the first eigenvectors
of all the Nj’s maximise it. It follows that in the particular case where
the Nj’s are the orthogonal projectors on reference subspaces Sj’s and
all ωj’s are equal, any vector u belonging to any Sj maximises φℵ,ω,∞ (u).
So, uwill be drawn to the Sj closest to it.

Continuum between the two extreme values. To sum things up, what we
see is that when l is minimum, the structurally relevant directions are the prin-
cipal components, thus very global structural directions. By contrast, when l
is maximum, the structurally relevant directions are more local (ultimately, the
reference–subspaces, e.g. the variables themselves). As the appropriate bundle
locality parameter depends on the data, it must be chosen by cross–validation
techniques.

We will now present some usual particular cases of structural relevance
measures covered by general formula (5.17). In the following, P denotes the
weight matrix reflecting the a priori relative importance of observations —
typically P = 1

n
In for a uniform weighting.
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5.8.1.2 Component Variance

Let X being composed of centred numeric variables. Suppose we want
to determine the direction span {u} such that the inertia of observations along
span {u} is maximum. The associated structural relevance criterion can then
be defined as

φ (u) = Var (Xu) = ‖Xu‖2
P = uTXTPXu. (5.19)

When we set 
ℵ = {N1} , whereN1 = XTPX

ω = {ω1} , where ω1 = 1
l = 1,

general formula (5.17) reduces to (5.19). The latter is maximised by the first
direct eigenvector in the PCA of (X,M ,P ). So here, metric M must be such
that PCA of (X,M ,P ) is relevant. Now, in practice, explanatory variables are
most often a mixture of numeric and nominal variables (see for example Lebart
et al. (1995) and Bry (1994), or more recently Chavent et al. (2014) and Chavent
et al. (2017)). More precisely, we often have

X =
[
x1 | . . . | xH |X1 | . . . |XB

]
, (5.20)

where x1, . . . ,xH are column–vectors coding the centred numeric variables
andX1, . . . ,XB are blocks of centred indicator–variables, each block coding a
categorical variable. Note that if the b–th categorical variable has lb levels, then
Xb has lb − 1 columns, the removed level being taken as “reference level”. In
such a framework, we must consider the block–diagonal metric matrix

M = bDiag
[

(xT
1Px1)−1 , . . . , (xT

HPxH)−1 ,

(XT
1PX1)−1

, . . . , (XT
BPXB)−1

]
.

Indeed, this matrix bridges ordinary PCA of numeric variables with that of
Multiple Correspondence Analysis (Greenacre and Blasius, 2006).

5.8.1.3 Block variance captured by component and Variable–Powered Iner-
tia

Suppose X consists of p standardised numeric variables. If we want to
find the normalised component f = Xu that captures the maximum inertia of
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the variable set x1,x2, . . . ,xp, the structural relevance should be defined as

φ (u) =
p∑
j=1

ρ2 (f ,xj) =
p∑
j=1

〈f |xj 〉2P

=
p∑
j=1

f TPxjx
T
jPf

= uTXTP

(
p∑
j=1

xjx
T
j

)
PXu

= uT (XTPXXTPX)u = uT (XTPX)2
u. (5.21)

This time, the particular structural relevance criterion defined by (5.21) corre-
sponds to the general formula (5.17) after setting

ℵ = {N1} , whereN1 = (XTPX)2

ω = {ω1} , where ω1 = 1
l = 1.

For identification purposes, we impose ‖f‖2
P = 1. We then have ‖Xu‖2

P =
〈Xu |Xu 〉P = u (XTPX)u = 1. As a result, the suitable metric matrix is
here M = (XTPX)−1, so that uTM−1u = 1 ⇐⇒ ‖f‖2

P = 1. Since (5.21)
is the inertia of variables along span {Xu}, it is maximised by the first dual
eigenvector in the PCA of (X,M ,P ).

Naturally, for XTPX to be regular, X has to be a column full rank ma-
trix, which we will assume momentarily. As mentioned in Section 5.3.3, still
imposing ‖f‖2

P = 1 through metric M = (XTPX)−1, we can extend criterion
(5.21) to the “Variable–Powered Inertia” (VPI) defined as

φ (u) =
(

p∑
j=1

ωj
[
ρ2 (f ,xj)]l) 1

l

=
(

p∑
j=1

ωj

[〈
f
∣∣xj 〉2

P

]l) 1
l

. (5.22)

Two particular cases can be mentioned.

I If l = 1 and ωj = 1 ∀j ∈ {1, . . . , p}, (5.22) gives back block–variance
criterion (5.21).

I If l = 2 and ωj = 1 ∀j ∈ {1, . . . , p}, (5.22) yields a varimax–like criterion,
initially introduced by Kaiser (1958).

There is a simple way to extend the VPI criterion to both quantitative and
qualitative explanatory variables. To this end, let us consider the typical mix-
ture of numeric and nominal variables defined by (5.20). In this case, the VPI
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criterion is defined as

φ (u) =
(

H∑
h=1

ωh
[
ρ2 (Xu,xh)

]l +
B∑
b=1

ωb
[
R2 (Xu,Xb)

]l) 1
l

, (5.23)

where ρ2 is the square of the correlation coefficient and R2 the coefficient of
determination. In order to unify the two terms of the sum of formula (5.23)
within the same framework, let us recall that

I first,

ρ2 (Xu,xh) = cos2
P (Xu,xh)

= cos2
P

(
Xu,ΠP

span{xh}Xu
)

=

∥∥∥ΠP
span{xh}Xu

∥∥∥2

P

‖Xu‖2
P

,

I and then by definition,

R2 (Xu,Xb) =

∥∥∥ΠP
span{Xb}Xu

∥∥∥2

P

‖Xu‖2
P

,

where ΠP
span{Xb} = XT

b (XT
bPXb)−1

XT
bP .

In addition, as detailed in Section 5.8.1.4, we have∥∥ΠP
span{Xb}Xu

∥∥2
P

=
〈
Xu

∣∣ΠP
span{Xb}Xu

〉
P
.

Finally, since ‖Xu‖2
P = 1, (5.23) writes more explicitly

φ (u) =
[

H∑
h=1

ωh
〈
Xu

∣∣ΠP
span{xh}Xu

〉l
P

+
B∑
b=1

ωb
〈
Xu

∣∣ΠP
span{Xb}Xu

〉l
P

] 1
l

.

Let us now consider the case where matrix XTPX is singular. Owing to
collinearity, as suggested in Section 5.3.3,X should be replaced with the matrix
C of its principal components associated with non–null eigenvalues. More
precisely,C = XV , whereV is the matrix of corresponding unit–eigenvectors.
The component is then sought as f = Cu = Xũ, where ũ = V u. Bry et al.
(2018) show that among all coefficient vectors t such that Xt = f , ũ is that
which has the minimum L2–norm. Indeed, consider the following program:{

min ‖t‖2

subject to Xt = f
⇐⇒

{
min ‖t‖2

subject to Xt = Xũ.
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Of course,
Xt = Xũ⇐⇒Xe = 0, where e = t− ũ.

According to the definition of matrix V , each column–vector vk of V satisfies

XTPXvk = λkvk, with λk > 0.

Therefore, ũ = V u ∈ ImXT = (KerX)⊥ and on the other hand, since Xe = 0,
e ∈ KerX . The decomposition t = ũ + e is then unique. The Pythagore’s
theorem yields

‖t‖2 = ‖ũ‖2 + ‖e‖2 ,

thus implying that ‖t‖2 is minimum for e = 0, i.e. for t = ũ.

5.8.1.4 Closeness of the component’s coefficient vector to some reference
subspaces

Finally, suppose we would like to determine vector u that is simultane-
ously as close as possible to a family of predefined subspaces (S1, . . . ,SJ). For
the sake of simplicity, we choose M−1 = I , so that ‖u‖2 = 1. The closeness
of vector u to subspace Sj can be measured through cos2 (u, span {Sj}), which
can be rewritten as

cos2 (u, span {Sj}) = cos2
(
u,Πspan{Sj}u

)
=

∥∥∥Πspan{Sj}u
∥∥∥2

‖u‖2 =
∥∥∥Πspan{Sj}u

∥∥∥2
because ‖u‖2 = 1

=
〈

Πspan{Sj}u
∣∣∣Πspan{Sj}u

〉
=
〈
u
∣∣∣Π?

span{Sj}Πspan{Sj}u
〉

where Π? is the adjoint of Π

=
〈
u
∣∣∣Π2

span{Sj}u
〉

since Π is self–adjoint

=
〈
u
∣∣∣Πspan{Sj}u

〉
since Π is idempotent.

In this context, we may define the structural relevance as

φ (u) =
J∑
j=1

cos2 (u,Sj) =
J∑
j=1

uT Πspan{Sj}u, (5.24)
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which goes back to the general structural relevance formula (5.17) with
ℵ =

{
Πspan{S1}, . . . ,Πspan{SJ}

}
ω = {1, . . . , 1}
l = 1.

5.8.2 Analytical expression of the SCGLR–specific criterion

As a reminder, the specific criterion which SCGLR maximises for comput-
ing the (h+ 1)–th loading–vector, uh+1, writes

Jh (u) = [φ (u)]s [ψAh (u)]1−s ,
with 

φ (u) =
(

J∑
j=1

ωj (uTNju)l
) 1

l

ψAh (u) =
q∑

k=1

∥∥∥zξk∥∥∥2

W
ξ
k

cos2
W
ξ
k

(
zξk, span {Xu,Ah}

)
.

To facilitate the computation of the loading–vector, a solution is to express
Jh (u) as a function of quadratic forms. As φ (u) corresponds to a generalised
weighted average of quadratic forms, it is now necessary to transform the ex-
pression of ψAh (u). To achieve that, we decompose the projection on the re-

gression space as follows. With X h
k = ΠW

ξ
k

span{Ah}⊥
X , we have

span
{
Xu,Ah

}
= span

{
X h
k u,Ah

}
.

Since span
{
X h
k

}
is orthogonal to span

{
Ah

}
,

ΠW
ξ
k

span{Xu,Ah} = ΠW
ξ
k

span{Xhk u,Ah}
= ΠW

ξ
k

span{Xhk u}
+ ΠW

ξ
k

span{Ah}.

In addition, classical Euclidean statistical concepts give at a time

cos
W
ξ
k

(
zξk, span {Xu,Ah}

)
=

∥∥∥∥ΠW
ξ
k

span{Xu,Ah}z
ξ
k

∥∥∥∥
W
ξ
k∥∥∥zξk∥∥∥

W
ξ
k

,

and

cos
W
ξ
k

(
zξk, span {Xu,Ah}

)
=

〈
zξk

∣∣∣∣ΠW
ξ
k

span{Xu,Ah}z
ξ
k

〉
W
ξ
k∥∥∥zξk∥∥∥

W
ξ
k

∥∥∥∥ΠW
ξ
k

span{Xu,Ah}z
ξ
k

∥∥∥∥
W
ξ
k

.
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Consequently,

cos2
W
ξ
k

(
zξk, span {Xu,Ah}

)
=

〈
zξk

∣∣∣∣ΠW
ξ
k

span{Xu,Ah}z
ξ
k

〉
W
ξ
k∥∥∥zξk∥∥∥2

W
ξ
k

=

〈
zξk

∣∣∣∣ (ΠW
ξ
k

span{Xhk u}
+ ΠW

ξ
k

span{Ah}

)
zξk

〉
W
ξ
k∥∥∥zξk∥∥∥2

W
ξ
k

=

〈
zξk

∣∣∣∣ΠW
ξ
k

span{Xhk u}
zξk

〉
W
ξ
k∥∥∥zξk∥∥∥2

W
ξ
k

+

〈
zξk

∣∣∣∣ΠW
ξ
k

span{Ah}z
ξ
k

〉
W
ξ
k∥∥∥zξk∥∥∥2

W
ξ
k

.

The Goodness–of–Fit measure ψAh (u) then writes more explicitly

ψAh (u) =
q∑

k=1

∥∥∥zξk∥∥∥2

W
ξ
k

cos2
W
ξ
k

(
zξk, span {Xu,Ah}

)
=
〈
zξk

∣∣∣∣ΠW
ξ
k

span{Xhk u}
zξk

〉
W
ξ
k

+
〈
zξk

∣∣∣∣ΠW
ξ
k

span{Ah}z
ξ
k

〉
W
ξ
k

.

Now,

〈
zξk

∣∣∣∣ΠW
ξ
k

span{Xhk u}
zξk

〉
Wξ,k

= zξk
T
W ξ

k ΠW
ξ
k

span{Xhk u}
zξk

= Trace
(
zξk

T
W ξ

k ΠW
ξ
k

span{Xhk u}
zξk

)
= Trace

(
zξk

T
W ξ

k X h
k u
[(
X h
k u
)T
W ξ

k X h
k u
]−1 (
X h
k u
)T
W ξ

k z
ξ
k

)
= Trace

([(
X h
k u
)T
W ξ

k X h
k u
]−1 (
X h
k u
)T
W ξ

k z
ξ
kz

ξ
k

T
W ξ

k X h
k u

)
=
[(
X h
k u
)T
W ξ

k X h
k u
]−1 (
X h
k u
)T
W ξ

k z
ξ
kz

ξ
k

T
W ξ

k X h
k u

=
uTX h

k

T
W ξ

k z
ξ
kz

ξ
k

T
W ξ

k X h
k u

uTX h
k

T
W ξ

k X h
k u

.
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By defining 
Ah
k

:= X h
k

T
W ξ

k z
ξ
kz

ξ
k

T
W ξ

k X h
k

Bh
k

:= X h
k

T
W ξ

k X h
k

chk :=
〈
zξk

∣∣∣∣ΠW
ξ
k

span{Ah}z
ξ
k

〉
W
ξ
k

we get the general matrix form of the SCGLR–specific criterion to be max-
imised:

Jh (u) =
[

J∑
j=1

ωj (uTNju)l
] s
l
[

q∑
k=1

(
uTAh

ku

uTBh
ku

+ chk

)]1−s

.

5.8.3 The Projected Iterated Normed Gradient (PING) algo-
rithm

The Projected Iterated Normed Gradient (PING) is an extension of the it-
erated power algorithm — see Householder (2013) and Wilkinson (1965) for a
complete treatment, and Golub and van der Vorst (2000) for a nice review. The
purpose of the PING algorithm is to solve any program which has the form{

max Jh (u)
subject to uTM−1u = 1 and ∆T

hu = 0.
(5.25)

Note that putting v := M−1/2u, Gh (v) := Jh
(
M 1/2v

)
and Eh := M 1/2∆h,

program (5.25) is strictly equivalent to program (5.26):{
max Gh (v)
subject to vTv = 1 and ET

hv = 0.
(5.26)

Solving (5.26) requires the definition of the following Lagrange function

L (v, λ,µ) = Gh (v)− λ (vTv − 1)− µTET
hv,

where λ and µ are the Lagrange multipliers associated with constraints vTv =
1 and ET

hv = 0 respectively. As usual, we have the following equivalence:

∇
λ,µ

L (v, λ,µ) = 0⇐⇒

{
vTv = 1
ET
hv = 0,

(5.27)
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where ∇
λ,µ

L is the gradient of L with respect to (λ,µ). Besides, with Γh (v) =
∇Gh (v),

∇
v

L (v, λ,µ) = 0⇐⇒ Γh (v)− 2λv −Ehµ = 0

⇐⇒ v = 1
2λ [Γh (v)−Ehµ]

(5.28)

(5.29)

Premultiplying (5.28) by ET
h yields

2λET
hv = ET

hΓh (v)−ET
hEhµ

⇐⇒ ET
hΓh (v)−ET

hEhµ = 0 according to (5.27, line 2)
⇐⇒ ET

hΓh (v) = ET
hEhµ

⇐⇒ µ = (ET
hEh)−1

ET
hΓh (v) . (5.30)

Then, putting back (5.30) into (5.29) provides

v = 1
2λ

[
Γh (v)−Eh (ET

hEh)−1
ET
hΓh (v)

]
= 1

2λ

[
I −Eh (ET

hEh)−1
ET
h

]
Γh (v)

= 1
2λΠspan{Eh}⊥Γh (v) , (5.31)

where Πspan{Eh}⊥ = I −Eh (ET
hEh)−1

ET
h.

Finally, constraint ‖v‖2 = 1 (Equation 5.27, line 1) implies, with (5.31):

v =
1

2λΠspan{Eh}⊥Γh (v)∥∥∥ 1
2λΠspan{Eh}⊥Γh (v)

∥∥∥ =
Πspan{Eh}⊥Γh (v)∥∥∥Πspan{Eh}⊥Γh (v)

∥∥∥ , (5.32)

which gives the basic iteration of the PING algorithm:

v[t+1] =
Πspan{Eh}⊥Γh

(
v[t])∥∥∥Πspan{Eh}⊥Γh (v[t])

∥∥∥ . (5.33)

Direction of ascent. The purpose of this paragraph is to show that the iter-
ation given by (5.33) follows a direction of ascent. One solution to do this is
to show that the direction given by the arc

(
v[t],v[t+1]), v[t] being the current

starting point, is a direction of ascent, namely〈
v[t+1] − v[t] ∣∣Γh (v[t]) 〉 > 0.
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First of all let us underline that by construction, at each step t of the process,
v[t] is orthogonal to span {Eh}. As a result, since

∀t,v[t] = Πspan{Eh}⊥v
[t],

we have〈
v[t+1] − v[t] ∣∣Γh (v[t]) 〉 =

〈
Πspan{Eh}⊥

(
v[t+1] − v[t]) ∣∣∣Γh (v[t]) 〉

=
〈
v[t+1] − v[t]

∣∣∣Πspan{Eh}⊥Γh
(
v[t]) 〉 . (5.34)

Now, (5.33) implies

Πspan{Eh}⊥Γh
(
v[t]) = v[t+1]

∥∥∥Πspan{Eh}⊥Γh
(
v[t])∥∥∥ (5.35)

and equations (5.34) and (5.35) lead to

sgn
(〈
v[t+1] − v[t] ∣∣Γh (v[t]) 〉) = sgn

(〈
v[t+1] − v[t] ∣∣v[t+1] 〉)

= sgn
(∥∥v[t+1]∥∥2 −

〈
v[t] ∣∣v[t+1] 〉)

= sgn
(
1− cos

(
v[t],v[t+1])) .

Therefore, 〈
v[t+1] − v[t] ∣∣Γh (v[t]) 〉 > 0.

Increase of function Gh at each iteration. Despite the fact that iteration (5.33)
follows a direction of ascent, it does not guarantee that function Gh actually
increases on every step. Indeed, we may go too far in such a direction and
overshoot the maximum. However, let us consider

κ[t] :=
Πspan{Eh}⊥Γh

(
v[t])∥∥∥Πspan{Eh}⊥Γh (v[t])

∥∥∥ .
We can then show that staying close enough to the current starting point on the
arc

(
v[t],κ[t]) ensures that function Gh increases. With this aim in mind, let $

be the plane tangent to the unit sphere on v[t] and letw denote the unit–vector
tangent to arc

(
v[t],κ[t]) on v[t]. Then ∃τ > 0 : w = τΠ$κ

[t], and〈
w
∣∣κ[t] 〉 = τ

〈
Π$κ

[t] ∣∣κ[t] 〉 = τ cos2 (κ[t], $
)
> 0.
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v[t]κ[t]

κ[t]
w

Current iteration of PING. Although staying close enough to the current
starting point on the arc

(
v[t],κ[t]) ensures the increase of function Gh, staying

too close can impact the convergence speed of the algorithm to reach the max-
imum. On the other hand, going too far from the starting point can cause the
divergence of the algorithm. Bry et al. (2018) therefore propose a generic it-
eration of PING (Algorithm 5.2) and an alternative one (Algorithm 5.3) which
take this curse into consideration.

First rank component. Component f1 = Xu1 is obtained by solving{
max [φ (u)]s × [ψA (u)]1−s

subject to: uTM−1u = 1.

This corresponds to Program (5.25) with h = 0, where

I J0 (u) = [φ (u)]s × [ψA0 (u)]1−s,

I A0 = A (the matrix of additional explanatory variables), and

I ∆0 = 0.

In this particular case, we have E0 = M 1/2∆0 = 0, and so:

Πspan{E0}⊥ = I.

Higher rank components. Let Fh =
[
f1 | . . . | fh

]
be the matrix of the first

h components and Ah =
[
Fh | A

]
. Let P denote the weight matrix reflecting

the a priori relative importance of observations (P = 1
n
In if all observations

are of equal importance). Component fh+1 = Xuh+1 is obtained by solving{
max [φ (u)]s × [ψAh (u)]1−s

subject to: uTM−1u = 1 and F T
hPXu = 0.
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This corresponds to Program (5.25), where

I Jh (u) = [φ (u)]s × [ψAh (u)]1−s,

I Ah =
[
Fh | A

]
, and

I ∆h = XTPFh.

Algorithm 5.2: The PING algorithm (generic iteration).

while convergence of v non reached do

κ[t] ←
Πspan{Eh}⊥Γh

(
v[t])∥∥∥Πspan{Eh}⊥Γh (v[t])

∥∥∥ .

A Newton–Raphson unidimensional maximisation procedure
is used to find the maximum of Gh (v) on the arc

(
v[t],κ[t]) and

take it as v[t+1].

t←− t+ 1
end

Algorithm 5.3: The PING algorithm (alternative generic iteration).

while convergence of v non reached do

m←
Πspan{Eh}⊥Γh

(
v[t])∥∥∥Πspan{Eh}⊥Γh (v[t])

∥∥∥
while Gh (m) < Gh

(
v[t]) do

m← v[t] +m
‖v[t] +m‖

end

v[t+1] ←m
t← t+ 1

end

Initialisation. To quickly find f1, algorithm PING is initialised with the first
PLS component of the responses onX . Likewise, for h > 2, PING is initialised
with the first PLS component of the responses on X deflated on components
Fh−1 =

[
f1 | . . . | fh−1

]
.
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5.8.4 Models with offset

This section is inspired by Bry et al. (2016). In many situations, we know
that response variable y is proportional to a certain variable o, which does not
have the same status as the set of explanatory variables X . Indeed, the values
of variable o are simply added to the linear predictor of the target, and the
associated coefficient does not have to be estimated since is assumed to be 1.
Such a framework is referred to as “model with offset”.

The tree species abundance dataset Genus (Section 5.6), from which the
development of the mixed–SCGLR method orginated, presents such a config-
uration. As a reminder, abundance yk,i of species k on plot i has been modelled
by

yk,i | ξk∼P
(
λ = µξk,i

)
µξk,i = E (yk,i | ξk) = exp

[
ηξk,i

]
= exp

[
K∑
j=1

(xT
i:uj) γk,j + aT

i:δk + uT
i:ξk

]
.

(5.36)

βk =
K∑
j=1
ujγk,j is the vector of regularised fixed effects, δk the vector associated

with additional explanatory variables, and ξk the vector of random effects.
However, in practice, the plots do not have the same surface area and it is
necessary to take this feature into account. The abundance of a tree species
on a given plot is then assumed to be proportional to the surface area of that
plot. Let oi be the surface area of plot i. Conditional expectation µξk,i involved
in modelling (5.36) is then replaced by

µ̃ξk,i = E (yk,i | ξk, oi) = oi × exp
(
ηξk,i

)
= exp

(
ηξk,i + ln(oi)

)
,

so that variable o is considered as an offset.

Compared to Algorithm 5.1, the main change concerns the update of
conditional expectation µ̃ξk,i. Algorithm 5.4 summarises the mixed–SCGLR
method with offset, in the case of a Poisson regression with log–link.
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Algorithm 5.4: The single component mixed–SCGLR algorithm with
an offset (The case of a Poisson regression with log–link).

while convergence criterion not reached do
Step 1: Computing component f [t+1].

Steps 2 – 3: Updating parameter estimates γ[t+1]
k , δ[t+1]

k , σ2
k

[t+1], and
updating predictions ξ[t+1]

k .

Step 4: Updating the working variables and the weighting matrices.
For each k ∈ {1, . . . , q}, set

ηξk
[t+1] = f [t+1]γ

[t+1]
k +Aδ[t+1]

k +Uξ[t+1]
k

µ̃ξ
[t+1]

k,i = exp
(
ηξk,i

[t+1] + log(oi)
)
, i ∈ {1, . . . , n}

zξk,i
[t+1] = ηξk,i

[t+1] +
yk,i − µ̃ξ

[t+1]
k,i

µ̃ξ
[t+1]

k,i

, i ∈ {1, . . . , n}

W ξ
k

[t+1] = Diag
(
µ̃ξ

[t+1]
k,i

)
i=1,...,n

Incrementing: t←− t+ 1
end
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An individual can’t be judged by his group mean.
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Chapter 6. Regularisation of GLMMs with an autoregressive random effect

6.1 Introduction

This chapter is essentially inspired by the reading of the articles by Eliot
et al. (2011) and Karlsson and Skoglund (2004), and has resulted in an paper
currently being written. The article by Eliot et al. (2011) extends the ridge
regression to linear mixed models. The estimation method they suggest is
based on a L2–penalised EM algorithm, which handles the potentially high
correlations between explanatory variables. In order to take into account the
dependence induced by repeated measures on several individuals over time,
the model includes an individual–specific random effect. Although this pa-
per focuses on longitudinal data, the model does not consider a time–specific
random effect common to all individuals. Complementarily, Karlsson and
Skoglund (2004) consider both individual– and time–specific random effects.
The latter are viewed as latent phenomena (not accounted for by the explana-
tory variables) affecting all individuals, and persistent over time. However,
they do not consider any situation where it is necessary to regularise the
model.

Therefore as a first step in the LMM framework, it appears necessary to
adapt the L2–penalised EM of Eliot et al. (2011) to the case of an autoregressive
time–specific random effect. Besides, most of the existing regularisation meth-
ods — including those involving the use of the EM algorithm — are based on
penalised likelihood. However, these methods suffer from the strong correla-
tions among explanatory variables instead of taking advantage of them. We
then propose a Supervised Component–based regularised EM (SCEM) as an
alternative: instead of subtracting a penalty term to the likelihood, we rather
suggest the possibility to add a bonus term favouring the alignment of compo-
nents on the most interpretable directions in the explanatory subspace. Finally,
an extension of the previous strategies to GLMMs with an autoregressive time–
specific random effect is also proposed. Inspired by the iterative procedure
proposed by Schall (1991), we keep the same linearisation step. But in order
to take into account both the strong correlations in X and the autocorrelated
structure of the time–specific random effect, we suggest to replace the usual
estimation step (involving an Henderson’s system) with an L2–penalised or an
SCEM algorithm.

The chapter is organised as follows. First, Section 6.2 formalises the model,
sets the main notations used throughout the chapter, and gives some situations
in which serially correlated time–specific random effects arise naturally. Since
this chapter focuses on the EM algorithm, Section 6.3 recalls different ways of
conceptualising it. In Section 6.4 we reinterpret the penalised EM algorithm as
a double maximisation, and we introduce the alternative SC–based regularisa-
tion. Sections 6.5 and 6.6 respectively give the technical details of the ridge–
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and SC–based EMs for LMMs with an autocorrelated time–specific random
effect. Section 6.7 designs their extensions to GLMMs. Finally, comparative
results on simulated data are presented in Section 6.8.

6.2 Model definition and notations

In this section, we present the main hypotheses of the GLMM framework
considered in this work, in particular the random effects distributions. For the
sake of simplicity, we consider balanced panel data with q1 individuals, each
of them being observed at the same q2 time–points. We denote by n = q1 × q2
the total number of observations. LetX be the n×p fixed–effect design matrix,
and U the n × q random–effect design matrix, where q = q1 + q2. Let also Y
be the n–dimensional random response vector, β the p–dimensional vector of
fixed effects, and ξ the q–dimensional vector of random effects. We observe a
realisation y of Y , but ξ is not observed.

We conventionally assume that:

(i) Given ξ, the Yi, i ∈ {1, . . . , n}, are independent and their distribution
belongs to the exponential family.

(ii) The conditional mean µi = E(Yi | ξ) depends on β and ξ through
the link function, g, and the linear predictor, ηi = xT

i:β + uT
i:ξ, with

ηi = g(µi).

Less conventionally, we consider a model with two random effects ξ1 and
ξ2 with different roles and distributions:

(i) ξ1 is the individual–specific random effect, which links all the observa-
tions of an individual to the same realisation of the random effect. We
suppose:

ξ1∼Nq1

(
0, σ2

1A1
)
,

with A1 a known matrix (by default here A1 = Iq1 since individuals
are assumed independent), and σ2

1 the unknown “individual” variance
component.

(ii) ξ2 is the serially correlated time–specific random effect which links all
the observations at time t to the same realisation of the random effect.
It is common to all the individuals, and can be viewed as some latent
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phenomenon evolving in time and not measured in the explanatory vari-
ables. As these effects tend to persist over time, we model them through
an order–1 stationary Gaussian autoregressive process (AR(1)). More
precisely, we assume that on the first time–point (t = 1),

ξ2,1∼N1

(
0, σ2

2
1− ρ2

)
, (6.1)

and for each t ∈ {2, . . . , q2},

ξ2,t = ρ ξ2,t−1 + νt,

νt∼N1
(
0, σ2

2
)
.

(6.2)

In (6.1) and (6.2), ρ is the unknown parameter of the AR(1) and σ2
2 the un-

known “time–specific” variance component. The order–1 autoregressive
correlation structure appears explicitly in the entire distribution of vector
ξ2:

ξ2∼Nq2

(
0, σ2

2A2(ρ)
)
, with

A2(ρ) = 1
1− ρ2


1 ρ ρ2 · · · ρq2−1

ρ 1 ρ · · · ρq2−2

ρ2 ρ
. . . . . . ...

...
... . . . . . . ρ

ρq2−1 ρq2−2 · · · ρ 1

 .

Finally, ξ1 and ξ2 are assumed independent. Let us denote ξ = (ξT
1, ξ

T
2)T,

U1 = Iq1 ⊗ 1q2 ,U2 = 1q1 ⊗ Iq2 andU = [U1 |U2]. Linear predictor η can be ma-
tricially written:

η = Xβ +Uξ.

This kind of two–way random effects model arises naturally in many ar-
eas. In a non–exhaustive way, let us just give three of them.

(a) In an economic context for instance, if one studies the trends in the num-
ber of loans granted by several banks, the bank–specific effect has to be
taken into account. But we must not forget that all banks share a com-
mon economic context — seen as a latent phenomenon — which tends
to persist over time (e.g. a common supply–demand context, the general
degree of confidence, the expected depreciation of the currency, etc).

(b) In forest ecology, if one studies the growth of many trees over time, the
specific potential of each tree has to be taken into account, but also the
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common ecological environment of the zone (e.g. close weather con-
ditions such as light exposure, rainfall or moisture regime, presence of
pests, etc), which is often too complex to be directly observed through
the explanatory variables, and has a certain temporal inertia.

(c) Lastly in epidemiology, clinical studies often involve administering a
new treatment to several patients with a certain disease. The goal is to
observe the speed of the healing process by means of several visits sched-
uled over time. It is obvious to consider the dependence of the measures
related to the same patient. But it may be necessary to take into account
the latent state evolution shared by all patients. Indeed, since they partic-
ipate in the same clinical study — often double–blind —, they are likely
to share common conditions, including the same common standard hu-
man physiological struggle.

6.3 Brief review of the EM algorithm

Since we consider a model with non–observed random effects, the EM al-
gorithm seems to be a good option to perform maximum likelihood estimation.
Initially introduced by Dempster et al. (1977), the EM algorithm has proven to
be an essential tool to find (local) maximum likelihood parameters of a statis-
tical model in cases where the equations can not be solved directly (e.g. in a
context of latent variable or missing data). In the following, the key points of
the EM algorithm and other ways of conceptualising it are presented. For a
comprehensive overview on the EM algorithm, we refer the reader to the nice
informal tutorial by Roche (2011) and the references therein.

Generically, assume that y refers to the observed realisation of some ran-
dom response Y , while on the contrary ξ ∈ Ξ refers to unobserved realisations
(the random effects in our case). It is further assumed that given y and ξ,
the complete log–likelihood, `c, is is a function of parameter θ (in our case
θ = (β, σ2

1, σ
2
2, ρ)).

6.3.1 A sequence of parameters increasing the likelihood

The EM algorithm can be seen as an iterative procedure whose purpose
is to construct a sequence of parameters

{
θ[t]
}
t>0

so that the log–likelihood

`
(
θ[t];y

)
increases with t. To this end, it can be noted that
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`
(
θ[t+1];y

)
− `
(
θ[t];y

)
= log

[
p
(
y;θ[t+1]

)]
− log

[
p
(
y;θ[t]

)]
= log

p
(
y;θ[t+1]

)
p
(
y;θ[t]

)


= log

∫
Ξ

p
(
y, ξ;θ[t+1]

)
p
(
y;θ[t]

) dξ


= log

∫
Ξ

p
(
y, ξ;θ[t+1]

)
p
(
y, ξ;θ[t]

) p
(
ξ|y;θ[t]

)
dξ


>

∫
Ξ

log

p
(
y, ξ;θ[t+1]

)
p
(
y, ξ;θ[t]

)
 p

(
ξ|y;θ[t]

)
dξ

:= Q
(
θ[t+1],θ[t]

)
.

(6.3)

(6.4)

Step (6.3) simply results from the fact that

p
(
y;θ[t]

)
=
p
(
y, ξ;θ[t]

)
p
(
ξ|y;θ[t]

)
and step (6.4) follows from the concavity of the logarithm function and
Jensen’s inequality.

In a nutshell, finding θ[t+1] such that Q
(
θ[t+1],θ[t]

)
> 0 and iterating

the process defines an EM algorithm. θ[t+1] is usually chosen to maximise
Q
(
θ,θ[t]

)
with respect to θ.

6.3.2 Initial formulation of the EM

Expanding (6.4) allows to rewrite the objective function, Q
(
θ,θ[t]

)
, as a

difference:
Q
(
θ,θ[t]

)
= Q

(
θ |θ[t]

)
−Q

(
θ[t] |θ[t]

)
,

where 
Q
(
θ |θ[t]

)
:=
∫

Ξ
log [p (y, ξ;θ)] p

(
ξ|y;θ[t]

)
dξ

Q
(
θ[t] |θ[t]

)
:=
∫

Ξ
log
[
p
(
y, ξ;θ[t]

)]
p
(
ξ|y;θ[t]

)
dξ.
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Now, Q
(
θ[t] |θ[t]

)
does not depend on θ. Maximising Q

(
θ,θ[t]

)
with re-

spect to θ is then equivalent to maximisingQ
(
θ |θ[t]

)
, which can be expressed

as the expectation of the complete log–likelihood under the distribution of ξ|y
at the current value θ[t]. Algorithm 6.1 summarises the most widespread form
of the EM algorithm, as initially formulated by Dempster et al. (1977).

Algorithm 6.1: The EM algorithm (initial formulation).

Start with an initial guess θ[0], and set t = 0
while some convergence criterion not reached do

E–step: Compute Q
(
θ |θ[t]

)
= Eξ|y

[
`c (θ;y, ξ) |θ[t]

]
M–step: Set θ[t+1] = arg max

θ
Q
(
θ |θ[t]

)
t← t+ 1

end

In their paper, Dempster et al. (1977) prove that each iteration provided
by Algorithm 6.1 increases the log–likelihood, namely

∀t, `
(
θ[t+1];y

)
> `

(
θ[t];y

)
.

Under mild conditions, they also prove the convergence of the sequence{
θ[t]
}
t>0

toward some θ?. However, θ? may be a saddle point of the log–

likelihood. Wu (1983) presents more sophisticated conditions (however dif-
ficult to verify in practice) which ensure the convergence of the sequence of
parameters toward a local maximum of the likelihood.

6.3.3 EM as a proximal point algorithm

In order to maximise a concave function J (·), the proximal point algo-
rithm (Martinet, 1970; Rockafellar, 1976) is an iterative procedure which can
be written

θ[t+1] = arg max
θ

{
J (θ)− λt

∥∥∥θ − θ[t]
∥∥∥2
}
. (6.6)

The procedure includes a quadratic penalty,
∥∥∥θ − θ[t]

∥∥∥2
, which is relaxed by a

sequence of positive parameters {λt}t>0.

With a view towards maximum likelihood estimation, Chrétien and Hero
(2000) propose to replace the quadratic penalty in (6.6) by a Kullback–type
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information measure. Denoting D
(
θ[t],θ

)
the Kullback–Leibler divergence

from p (ξ|y;θ) to p
(
ξ|y;θ[t]

)
, i.e.

D
(
θ[t],θ

)
= DKL

[
p
(
ξ|y;θ[t]

)
‖ p (ξ|y;θ)

]
=

∫
Ξ

log

p
(
ξ|y;θ[t]

)
p (ξ|y;θ)

 p(ξ|y;θ[t]
)

dξ,

they suggest an iterative scheme of the form

θ[t+1] = arg max
θ

{
` (θ;y)− λtD

(
θ[t],θ

)}
. (6.7)

The fact is that the EM, as described by Algorithm 6.1, is equivalent to the
update rule (6.7) with λt = 1 for all t. Indeed, the objective functionQ

(
θ |θ[t]

)
can be rewritten as

Q
(
θ |θ[t]

)
= Eξ|y

[
`c (θ;y, ξ) |θ[t]

]
= ` (θ;y) + Eξ|y

[
` (θ; ξ|y) |θ[t]

]
.

We then have

θ[t+1] = arg max
θ

{
` (θ;y) + Eξ|y

[
` (θ; ξ|y) |θ[t]

]
− Eξ|y

[
`
(
θ[t]; ξ|y

)
|θ[t]

]}
since the last term is constant in θ. We finally obtain

θ[t+1] = arg max
θ

 ` (θ;y)− Eξ|y

log

p
(
ξ|y;θ[t]

)
p (ξ|y;θ)

 |θ[t]


= arg max

θ

{
` (θ;y)−D

(
θ[t],θ

)}
.

The reinterpretation of the EM as a proximal point algorithm is very pow-
erful in that it allows to establish convergence results. Under rather restric-
tive regularity conditions, Chrétien and Hero (2000) show that the sequence{
θ[t]
}
t>0

linearly converges to the global maximum of the likelihood, provided

that lim
t→+∞

λt = λ? ∈ [0,+∞). The convergence rate may even be superlinear if

λ? = 0. Unfortunately, as soon as λt 6= 1, update rule (6.7) is generally in-
tractable and requires approximations of the log–likelihood and the Kullback–
Leibler divergence.
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6.3.4 EM as a double maximisation algorithm

As suggested by Neal and Hinton (1998), another way of conceptualising
EM is to reinterpret the E–step as another maximisation. Let us note B a lower
bound of the log–likelihood, `, defined by

B (q,θ) = Eq [`c (θ;y, ξ)] +H(q), (6.8)

where q denotes any probability distribution function and H(q) its entropy,
which writes H(q) = −

∫
Ξ log [q (ξ;θ)] q (ξ;θ) dξ. Then, the iterations given by

Algorithm 6.1 are equivalent to the iterations given by Algorithm 6.2.

Algorithm 6.2: EM as an iterative double–maximisation algorithm.

Start with an initial guess θ[0], and set t = 0
while some convergence criterion not reached do

E–step: Set q[t+1] = arg max
q

B
(
q,θ[t]

)
M–step: Set θ[t+1] = arg max

θ
B
(
q[t+1],θ

)
t← t+ 1

end

Section 6.4.1 shows this equivalence within the more general framework
of a penalised log–likelihood.

6.3.5 Extensions of the EM algorithm

When the log–likelihood has saddle points or plateaus, it is well known
that the EM algorithm may be very sensitive to the initial guess θ[0] and may
exhibit slow convergence rate. In addition, there are situations where the aux-
iliary function Q (·, ·) is intractable. So many deterministic and stochastic ex-
tensions have been proposed for circumventing these limitations that an ex-
haustive state of art could not be presented here.

Nevertheless, some deterministic schemes mainly motivated by con-
vergence speed consideration can be mentioned, such as the Accelerated
EM Meng and Rubin (1993) and the Expectation Conditional Maximisation
(Jamshidian and Jennrich, 1993). In order to avoid convergence towards a
saddle–point, stochastic extensions have been developed (e.g. the Stochastic
EM by Celeux (1985), and the Stochastic Approximation type EM by Celeux
et al. (1995)). The Monte Carlo EM proposed by McCulloch (1997) is designed
to deal with the intractability of the auxiliary function that occurs for GLMM
estimation.
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In the following, we focus on the use of the EM algorithm in the context
of regularised and penalised likelihood estimation.

6.4 Regularised EM algorithms

6.4.1 Penalised EM as a double maximisation

Seeing the EM algorithm as an iterative double–maximisation procedure
is a good point of view for its extension to the case of a penalised log–
likelihood. In the following, `pen denotes the penalised log–likelihood, pen (θ)
the penalty term and λ > 0 its associated shrinkage parameter. We then have

`pen (θ;y) = ` (θ;y)− λpen (θ) = log [p (y;θ)]− λpen (θ)

= log
[∫

Ξ
p (y, ξ;θ) dξ

]
− λpen (θ)

= log
[∫

Ξ

p (y, ξ;θ)
q (ξ;θ) q (ξ;θ) dξ

]
− λpen (θ)

(Jensen)
>

∫
Ξ

log
[
p (y, ξ;θ)
q (ξ;θ)

]
q (ξ;θ) dξ − λpen (θ)

=: Bpen (q,θ) .

(6.9)

Thus, the lower bound (6.8) writes now for the penalised log–likelihood:

Bpen (q,θ) =
∫

Ξ
`c (θ;y, ξ) q (ξ;θ) dξ

−
∫

Ξ
log [q (ξ;θ)] q (ξ;θ) dξ − λpen (θ)

= Eq [`c (θ;y, ξ)] +H(q)− λpen (θ)

= Eq
[
`c

pen (θ;y, ξ)
]

+H(q), (6.10)

with `c
pen the complete penalised log–likelihood. Thanks to (6.9), the direct

relation between Bpen and `pen is given by

Bpen (q,θ) =
∫

Ξ
log
[
p (ξ|y;θ) p (y;θ)

q (ξ;θ)

]
q (ξ;θ) dξ − λpen (θ)

= `pen (y;θ)−
∫

Ξ
log
[
q (ξ;θ)
p (ξ|y;θ)

]
q (ξ;θ) dξ

= `pen (y;θ)−DKL

(
q (ξ;θ) ‖ p (ξ|y;θ)

)
,

(6.11)
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whereDKL(q ‖ p) is the Kullback–Leibler divergence from p to q. The procedure
described by Algorithm 6.2 can then be rewritten using Bpen (Equation 6.10)
instead of B (Equation 6.8).

Penalised E–step The penalised expectation step t is to set

q[t+1] = arg max
q

Bpen

(
q,θ[t]

)
= arg min

q
DKL

(
q
(
ξ;θ[t]

)
‖ p
(
ξ|y;θ[t]

))
= arg min

q

∫
Ξ

log

 q
(
ξ;θ[t]

)
p
(
ξ|y;θ[t]

)
 q

(
ξ;θ[t]

)
dξ.

However, the Kullback–Leibler divergence is always non–negative and equals
zero when the two distributions coincide. Thus, we simply set

q[t+1]
(
ξ;θ[t]

)
= p

(
ξ|y;θ[t]

)
. (6.12)

Penalised M–step Given q[t+1] defined by (6.12), the penalised maximisation
step is to set

θ[t+1] = arg max
θ

{
Bpen

(
q[t+1],θ

)}
= arg max

θ


∫

Ξ

log

 p (y, ξ;θ)
p
(
ξ|y;θ[t]

)
 p(ξ|y;θ[t]

)
dξ − λpen (θ)


= arg max

θ

{∫
Ξ

log [p (y, ξ;θ)] p
(
ξ|y;θ[t]

)
dξ − λpen (θ)

}
= arg max

θ

{
Eξ|y

[
`c

pen (θ;y, ξ) |θ[t]
]}

.

Equation 6.11 ensures that on the fixed point of the algorithm, since q[∞] =
p
(
ξ|y;θ[∞]

)
,DKL = 0, soBpen = `pen and is being maximised on θ. The parallel

between the initial formulation of the EM algorithm and the version involving
a double–maximisation thus remains valid in the case of penalised likelihood.
Using the same arguments as those of Dempster et al. (1977), each penalised
EM iteration increases the penalised log–likelihood, namely

∀t > 0, `pen

(
θ[t+1];y

)
> `pen

(
θ[t];y

)
,

such that for most models, Algorithm 6.3 will converge to a local maximum of
`pen.
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Algorithm 6.3: The penalised EM algorithm.

Start with an initial guess θ[0], and set t = 0
while some convergence criterion not reached do

E–step: Compute Qpen

(
θ |θ[t]

)
= Eξ|y

[
`c

pen (θ;y, ξ) |θ[t]
]

M–step: Set θ[t+1] = arg max
θ
Qpen

(
θ |θ[t]

)
t← t+ 1

end

6.4.2 Supervised Component EM

The most commonly used penalty terms involve a norm — or a convex
combination of norms — of the coefficient vector. In these frameworks, the
penalised complete log–likelihood writes:

`c
pen (θ;y, ξ) =

`c (θ;y, ξ)− λ

2 ×


‖β‖1 for LASSO,
‖β‖2

2 for ridge,
(1− α)‖β‖1 + α‖β‖2

2 for elastic–net.
(6.13)

In (6.13), the shrinkage parameter λ is used to adjust the intensity of the
penalty, while the hyperparameter α ∈ [0, 1] determines the most appropri-
ate trade–off geometry between the L1– and the L2–norm with respect to the
structure of the explanatory variables. In short, these methods penalise large
coefficients because they consider the high correlations among the explanatory
variables as a pure nuisance, favouring effect–confusion. We propose an alter-
native regularisation strategy, which takes advantage of the high correlations
among the explanatory variables to drive the linear predictor away from the
“noise–dimensions”.

With this in mind, we assume that X may contain an unknown number
K < p of latent structurally relevant dimensions important to model and pre-
dict y. We thus propose to decompose the linear predictor through K orthog-
onal normalised componentsXu1,Xu2, . . . ,XuK in such a way that

η =
K∑
k=1

(Xuk) γk +Uξ,

where γk is the regression parameter associated with component fk = Xuk.
But for easy reading in the further development, we focus on the single com-

— 156 —



6.4. Regularised EM algorithms

ponent case, considering
η = (Xu) γ +Uξ.

Note that for identification purposes, we impose uTM−1u = 1, where M may
be any symmetric definite positive matrix relevant to maximise the chosen
Structural Relevance measure.

The key idea consists in basing the regularisation on the Variable–Powered
Inertia (VPI) criterion, already defined in Chapter 5, and more particularly
developed in Section 5.3.3. As a reminder, this criterion writes

φ (u) =
[

p∑
j=1

ωj

(
〈Xu|xj〉2P

)l] 1
l

=
[

p∑
j=1

ωj
(
uTXTPxjx

T
jPXu

)l] 1
l

, (6.14)

where

I ω = {ω1, . . . , ωp} is a weight system reflecting the a priori relative impor-
tance of variables (e.g. ω1 = ω2 = . . . = ωp = 1

p
for a uniform weighting),

I P is a weight matrix reflecting the a priori relative importance of obser-
vations (e.g. P = 1

n
In for a uniform weighting),

I l is a scalar that fulfils l > 1.

We also recall that for VPI, the metric matrix isM = (XTPX)−1.

Like hyperparameter α involved in the elastic–net penalty, parameter l
can be seen as a tool for refining the geometry of the regularisation, but in
a different way. As a matter of fact, parameter l allows to draw component
towards more (greater l) or less (smaller l) local variable–bundles. The best l
value must be found through cross–validation.

Now, instead of subtracting a penalty term to the likelihood, we pro-
pose to add a bonus term — involving the SR criterion (6.14) — in order to
favour the alignment of component Xu on directions we see as structural. In
the single component case, with θ = (u, γ, σ2

1, σ
2
2, ρ), we define a Supervised

Component–based Expectation–Maximisation algorithm (SCEM) built on the
complete regularised likelihood

Lc
SC (θ;y, ξ) = [Lc (θ;y, ξ)]1−s [φ (u)]s ,

where s ∈ [0, 1] is a trade–off parameter tuning the bonus intensity. This leads
to the following SC complete log–likelihood

`c
SC (θ;y, ξ) = (1− s) `c (θ;y, ξ) + s log [φ (u)] . (6.15)
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In order to link shrinkage parameter λ in (6.13) and trade–off parameter s in
(6.15), let us underline that for s 6= 1,

`c
SC (θ;y, ξ) ∝ `c (θ;y, ξ) + s

1− s log [φ (u)] .

As pointed out in Chapter 5, the greater the need to regularise, the closer s has
to be to 1, and the larger ratio s/(1− s) — as well as λ — has to be. With `c

SC as
defined in (6.15), Algorithm 6.4 summarises the key steps of our SC regularised
EM.

Algorithm 6.4: The SC regularised EM.

Start with an initial guess θ[0] and set t = 0
while some convergence criterion not reached do

E–step: Compute QSC

(
θ |θ[t]

)
= Eξ|y

[
`c

SC (θ;y, ξ) |θ[t]
]

M–step: Set θ[t+1] = arg max
θ:uTM−1u=1

QSC

(
θ |θ[t]

)
t← t+ 1

end

Proposition 6.1. The supervised component log–likelihood `SC

(
θ[t];y

)
in-

creases with t.

Proof. Let us begin by rewriting the auxiliary function QSC introduced in Al-
gorithm 6.4 as

QSC

(
θ |θ[t]

)
= Eξ|y

[
(1− s) [`(θ;y) + `(θ; ξ|y)] + s log [φ(u)] |θ[t]

]
= (1− s) `(θ;y) + s log [φ(u)] + (1− s)Eξ|y

[
`(θ; ξ|y) |θ[t]

]
= `SC(θ;y) + (1− s)R

(
θ |θ[t]

)
,

where R
(
θ |θ[t]

)
= Eξ|y

[
`(θ; ξ|y) |θ[t]

]
. The SC log–likelihood then writes

`SC (θ;y) = QSC

(
θ |θ[t]

)
− (1− s)R

(
θ |θ[t]

)
.

Subtracting `SC

(
θ[t];y

)
from `SC

(
θ[t+1];y

)
gives

`SC

(
θ[t+1];y

)
− `SC

(
θ[t];y

)
=

QSC

(
θ[t+1] |θ[t]

)
−QSC

(
θ[t] |θ[t]

)
− (1− s)

[
R
(
θ[t+1] |θ[t]

)
−R

(
θ[t] |θ[t]

)]
.
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Since θ[t+1] maximises QSC

(
· |θ[t]

)
, we have

QSC

(
θ[t+1] |θ[t]

)
−QSC

(
θ[t] |θ[t]

)
> 0.

In addition, using Jensen’s inequality, one can show that R
(
· |θ[t]

)
reaches its

maximum for θ[t]: for all θ,

R
(
θ |θ[t]

)
−R

(
θ[t] |θ[t]

)
= Eξ|y

log

 p (ξ|y;θ)
p
(
ξ|y;θ[t]

)
 |θ[t]


6 log

Eξ|y
 p (ξ|y;θ)
p
(
ξ|y;θ[t]

) |θ[t]


= log

[∫
Ξ
p (ξ|y;θ) dξ

]
= 0.

It follows from 1− s > 0 that

∀t > 0, `SC

(
θ[t+1];y

)
> `SC

(
θ[t];y

)
.

6.5 L2–penalised EM for Gaussian panel data

Using the notations of Section 6.2, and denoting ξ0 the vector of random
errors, we focus on the following Gaussian model:

y = Xβ +U1ξ1 +U2ξ2 + ξ0.

We assume ξ0∼Nn (0, σ2
0A0), withA0 a known matrix (by default hereA0 =

In), and σ2
0 the unknown residual variance component. It is also assumed that

ξ0, ξ1 and ξ2 are mutually independent. In this framework, with q0 = n, the
complete log–likelihood is given by

`c(θ;y, ξ) = cte− 1
2

{
2∑
j=0

(
qj log

(
σ2
j

)
+
ξT
jA
−1
j ξj

σ2
j

)
+ log (|A2(ρ)|)

}
, (6.16)

where |A| denotes the determinant of any square matrixA.
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In this part, we have θ = (β, σ2
0, σ

2
1, σ

2
2, ρ) and the complete penalised log–

likelihood writes

`c
pen (θ;y, ξ) = `c (θ;y, ξ)− λ

2 ‖β‖
2
2 ,

where `c is given by (6.16). At step t of the EM algorithm, the associated pe-
nalised objective function Qpen is

Qpen

(
θ |θ[t]

)
= cte− 1

2


2∑
j=0

qj log
(
σ2
j

)
+

1∑
j=0

Eξ|y
(
ξT
jA
−1
j ξj |θ

[t]
)

σ2
j

+

Eξ|y
(
ξT

2A
−1
2 (ρ)ξ2 |θ[t]

)
σ2

2
+ log (|A2(ρ)|) + λβTβ

 .

(6.17)

Regarding parameters β, σ2
0 and σ2

1 , the first–order conditions directly lead to

σ2
j

[t+1] = q−1
j Eξ|y

(
ξT
jA
−1
j ξj |θ

[t]
)
, for j ∈ {0, 1} ,

β[t+1] =
(
XTA−1

0 X + λσ2
0

[t+1]
Ip

)−1
XTA−1

0 Eξ|y

(
y −

2∑
j=1

Ujξj |θ[t]

)

while σ2
2

[t+1] and ρ[t+1] are solutions of the following system (see Ap-
pendix 6.10.1.2 for details):

2(q2 − 2)ρ σ2
2

ρ2 − 1 + Eξ|y
(
ξT

2
∂A−1

2 (ρ)
∂ρ

ξ2 |θ[t]
)

= 0

σ2
2 = q−1

2 Eξ|y
(
ξT

2A
−1
2 (ρ)ξ2 |θ[t]

)
.

(6.18)

Let us denote Sρ = A−1
2 (ρ) and S′ρ = ∂A−1

2 (ρ)
∂ρ

, which respectively explicitly

write 
1 −ρ 0 · · · 0
−ρ 1 + ρ2 −ρ · · · 0
0 −ρ . . . . . . ...
...

... . . . 1 + ρ2 −ρ
0 0 · · · −ρ 1

 and


0 −1 0 · · · 0
−1 2ρ −1 · · · 0
0 −1 . . . . . . ...
...

... . . . 2ρ −1
0 0 · · · −1 0

 .

In addition, let us define J [t](ρ) := Eξ|y
(
ξT

2Kρξ2 |θ[t]
)

, with Kρ =
2(q2 − 2)ρ
q2(ρ2 − 1)Sρ + S′ρ. Then (6.18) admits a more concise form:

J
[t](ρ) = 0

σ2
2 = q−1

2 Eξ|y
(
ξT

2Sρξ2 |θ[t]
)
.

(6.19a)

(6.19b)
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Finally, denoting

S′′ρ = ∂2A−1
2 (ρ)
∂ρ2 =


0 0 0 · · · 0
0 2 0 · · · 0
0 0 . . . . . . ...
...

... . . . 2 0
0 0 · · · 0 0

 ,

andK ′ρ = −2(q2 − 2)(1 + ρ2)
q2(ρ2 − 1)2 Sρ+

2(q2 − 2)ρ
q2(ρ2 − 1)S

′
ρ+S′′ρ, we can also define the first

derivative J ′[t](ρ) := Eξ|y
(
ξT

2K
′
ρξ2 |θ[t]

)
. A simple Newton–Raphson method

can therefore be used to find the appropriate ρ[t+1] that solves (6.19a). Once
obtained, (6.19b) becomes:

σ2
2

[t+1] = q−1
2 Eξ|y

(
ξT

2Sρ[t+1]ξ2 |θ[t]
)
.

As we can see, especially when updating parameter β[t+1], an appropriate
value of shrinkage parameter λ is necessary. Since Algorithm 6.3 is designed
for a fixed value of λ, the most common solution would be to choose this pa-
rameter as the minimiser of a 5–fold (for instance) cross–validation error. The
major disadvantage of the cross–validation is the high algorithmic cost. That
is why some authors — including Yi and Caramanis (2015) — are increasingly
considering the possibility of iteratively updating the shrinkage parameter. As
encouraged by Golub et al. (1979), the Generalised Cross–Validation (GCV) ap-
pears to be efficient for choosing a good ridge parameter. As a reminder, let us
note ŷ the fitted values and Hλ the “hat” matrix (depending on λ in the case
of ridge regression) that satisfies the equality ŷ = Hλy. The GCV consists in
choosing the shrinkage parameter that minimises

GCV(λ) = n−1 ‖y −Hλy‖2

[1− n−1 Trace (Hλ)]2
.

Greatly inspired by Eliot et al. (2011), Algorithm 6.5 presents our ridge–
penalised EM algorithm for LMM with an AR(1) random time–specific effect,
improved by iteratively updating the shrinkage parameter using a GCV pro-
cedure. Note that, writing

Γ[t+1] := Var[t+1](Y ) =
1∑
j=0

σ2
j

[t+1]
UjAjU

T
j + σ2

2
[t+1]

U2A2
(
ρ[t+1])U T

2

D[t+1] := Var[t+1](ξ) = bDiag
([
σ2

1
[t+1]

A1

]
;
[
σ2

2
[t+1]

A2
(
ρ[t+1])]) ,
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where U0 = In, the “hat” matrix involved in the calibration of λ[t+1] explicitly
writes

H
[t+1]
λ = X

(
XTΓ[t+1]−1

X + λIp

)−1
XTΓ[t+1]−1

+UD[t+1]U TΓ[t+1]−1
[
In −X

(
XTΓ[t+1]−1

X + λIp

)−1
XTΓ[t+1]−1

]
.

Algorithm 6.5: The adaptive ridge–penalised EM algorithm for LMM
with an AR(1) random time–specific effect.

Start with an initial guess θ[0] =
(
β[0], σ2

0
[0]
, σ2

1
[0]
, σ2

2
[0]
, ρ[0]

)
and set t = 0

while some convergence criterion not reached do

E–step: Compute
ϕ

[t]
j = Eξ|y

(
ξT
jA
−1
j ξj |θ

[t]
)
, j ∈ {0, 1}

ϕ
[t]
β = Eξ|y

(
y −

∑2
j=1Ujξj |θ

[t]
)

M–step: Set
σ2
j

[t+1] = q−1
j ϕ

[t]
j , j ∈ {0, 1}

ρ̃← ρ[t]

while |J(ρ)| large do

ρ̃← ρ̃− J [t](ρ̃)
J ′[t](ρ̃)

end

Set ρ[t+1] = ρ̃

σ2
2

[t+1] = q−1
2 Eξ|y

(
ξT

2Sρ[t+1]ξ2 |θ[t]
)

UpdateH [t+1]
λ and set

λ[t+1] = arg min
λ

GCV(λ) =
n−1

∥∥∥y −H [t+1]
λ y

∥∥∥2

[
1− n−1Trace

(
H

[t+1]
λ

)]2


β[t+1] =

(
XTA−1

0 X + λ[t+1]σ2
0

[t+1]
Ip

)−1
XTA−1

0 ϕ
[t]
β

t← t+ 1
end
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6.6 Supervised component EM for Gaussian panel
data

Especially in the case of a large number of explanatory variables with an
intrinsic high level of redundancies and collinearities, the decomposition of the
linear predictor on a small number of relevant dimensions can greatly facilitate
model interpretation. First focusing on the single component model, the goal
now is to propose an alternative to Algorithm 6.5. For that, let us consider the
model

y = (Xu) γ +U1ξ1 +U2ξ2 + ξ0.

Given the fact that the construction of component f = Xu must be guided
by both the structure of the explanatory space and the prediction quality of
the response, the regularised EM we suggest is based on the complete regu-
larised log–likelihood defined in (6.15). Hence, updates for variance compo-
nents σ2

j , j ∈ {0, 1, 2}, and for parameter ρ are the same as in Algorithm 6.5.
Nevertheless, owing to the product uγ, the maximisation step relative to these
parameters at step t is divided into two parts. First, given parameter γ[t], we
start by updating loading–vector u[t+1]. Then, once u[t+1] obtained, we update
γ[t+1]. More specifically, the update for σ2

0 being carried out, let us consider
function Q̃1

SC defined by

Q̃1
SC

(
u, γ |θ[t]

)
= s log [φ (u)] −

(1− s)
Eξ|y

(
‖y − (Xu) γ −Uξ‖2

A−1
0
|θ[t]

)
2σ2

0
[t+1] .

(6.20)

The new values of loading–vector u[t+1] and parameter γ[t+1] are thus obtained
by setting

u[t+1] = arg max
u:uTM−1u=1

Q̃1
SC

(
u, γ[t] |θ[t]

)
γ[t+1] = arg max

γ
Q̃1

SC

(
u[t+1], γ |θ[t]

)
.

(6.21)

More generally, if we consider K orthogonal components, the model then
writes

y =
K∑
k=1

(Xuk) γk +U1ξ1 +U2ξ2 + ξ0.

Let us briefly explain how to adapt the definition of the objective function
given by (6.20) and the previous alternated maximisation (6.21). Suppose the
first k − 1 components are built and concatenated into matrix Fk−1. An extra
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component fk = Xuk has to be such that uT
kM

−1uk = 1, along with the extra
orthogonality constraint to Fk−1, i.e.

(Xuk)TPFk−1 = 0.

At step t of the regularised EM, the objective function associated with rank
k > 1 component is then defined by

Q̃kSC

(
uk, γk |θ[t]

)
= s log [φ (uk)]− (1− s)

×
Eξ|y

(∥∥∥y −∑k−1
h=0

(
Xu

[t+1]
h

)
γ

[t+1]
h − (Xuk) γk −Uξ

∥∥∥2

A−1
0

|θ[t]
)

2σ2
0

[t+1] ,

(6.22)

where u[t+1]
0 and γ[t+1]

0 are considered null by convention, thus recovering func-
tion Q̃1

SC defined in (6.20) for k = 1. In view of the aforementioned consider-
ations, the new values of loading–vector u[t+1]

k and associated parameter γ[t+1]
k

are obtained by setting

u
[t+1]
k = arg max

uk∈S
[t+1]
k

Q̃kSC

(
uk, γ

[t]
k |θ

[t]
)

γ
[t+1]
k = arg max

γk
Q̃kSC

(
u

[t+1]
k , γk |θ[t]

) (6.23)

where S [t+1]
k =

{
u ∈ Rp | uTM−1u = 1 and (Xu)TPF

[t+1]
k−1 = 0

}
. As recently

detailed in Bry et al. (2018) and recalled in Appendix 5.8.3 (Chapter 5), the
PING algorithm can be used to maximise, at least locally, any criterion on such
a set as Sk. At step t of the SC regularised EM, it allows us to build component
of rank k > 1 by updating loading–vector u[t+1]

k as in (6.23), and also first rank
component by imposing F [t+1]

0 = 0. Appendix 6.10.2.1 details how the update
of parameter γk is obtained. Algorithm 6.6 summarises the SC regularised EM
we propose, designed for LMMs with an AR(1) random time–specific effect.

6.7 Extension to the non–Gaussian case

We shall now consider the general case in which the conditional distribu-
tion of the data given the random effects is assumed to belong to the exponen-
tial family. Unlike the Gaussian case, due to the intractability of the likelihood,
the direct application of the strategies presented in Sections 6.5 and 6.6 is im-
possible. The numerical and stochastic approximations used to handle this
intractability being still computationally intensive, we preferably develop a
quicker estimation technique, based on a linear approximation of the model
itself.
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Algorithm 6.6: The supervised component–based regularised EM algo-
rithm for LMMs with an AR(1) random time–specific effect.

Start with an initial guess
θ[0] =

(
u

[0]
1 , . . . ,u

[0]
K , γ

[0]
1 , . . . , γ

[0]
K , σ

2
0

[0]
, σ2

1
[0]
, σ2

2
[0]
, ρ[0]

)
and set t = 0

while some convergence criterion not reached do

Set σ2
0

[t+1]
, σ2

1
[t+1]

, σ2
2

[t+1]
, ρ[t+1] as in Algorithm 6.5

Compute ϕ[t]
γ = Eξ|y

(
y −

∑2
j=1Ujξj |θ

[t]
)

for k from 1 to K do

SC E–step:
Compute Q̃kSC

(
uk, γk |θ[t]

)
as defined by (6.22)

SC M–step: Set
u

[t+1]
k = arg max

uk∈S
[t+1]
k

Q̃SC

(
uk, γ

[t]
k |θ

[t]
)

γ
[t+1]
k =

[(
Xu

[t+1]
k

)T

A−1
0

(
Xu

[t+1]
k

)]−1 (
Xu

[t+1]
k

)T

A−1
0

×
[
ϕ

[t]
γ −

∑k−1
h=0

(
Xu

[t+1]
h

)
γ

[t+1]
h

]
end

t← t+ 1
end

Owing to the GLMM dependence structure, the Fisher scoring algorithm
— that performs maximum likelihood estimation in GLMs — was adapted by
Schall (1991). We, in turn, adapt Schall’s algorithm, still considering a Gaus-
sian approximation of the linearised model. Our proposal is to replace the
usual estimation step with a regularised EM. This makes it possible to take
into account the high level of correlation in X and the particular random ef-
fects distributions. The method can be decomposed into a linearisation step
and an estimation step:

Linearisation step. For each i ∈ {1, . . . , n}, a classic order–1 linearisation of
yi around µi is given by: g(yi) ' zi = g(µi) + (yi − µi)g′(µi). Matricially, this
approximation provides a working variable z entering the following linearised
model

M : z = Xβ +Uξ + e,

with Var (e | ξ) = Diag
(
[g′(µi)]2 Var (Yi | ξ)

)
i=1,...,n = R.

Estimation step. Schall’s method involves interpreting modelM as an LMM,
and then solving Henderson’s system to get current parameter estimates. Al-
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ternatively, we rather propose a regularised EM step based on linearised model
M, the latter still being interpreted as an LMM.

At step t, the conditional expectation we consider is therefore Eξ|z[t] in-
stead of Eξ|y. In the same vein, residual variance is R[t] instead of σ2

0
[t]
A0.

Considering this, in order to avoid ambiguity, two main refinements have to
be detailed. The first one concerns the update of shrinkage parameter λ that
occurs in the ridge–penalised version of the EM extended to GLMM. Contrary
to the homoskedastic LMM considered in Eliot et al. (2011), M contains het-
eroskedastic errors. We will then opt for the modified GCV criterion suggested
by Andrews (1991) and we set

λ[t+1] = arg min
λ

GCV(λ) =
n−1

∥∥∥z[t] −H [t+1]
λ z[t]

∥∥∥2

R[t]−1[
1− n−1 Trace

(
H

[t+1]
λ

)]2

 . (6.24)

The second refinement is about the objective function specific to the construc-
tion of the loading–vector in the SC–regularised version. In the GLMM frame-
work, the previously defined function Q̃kSC given by (6.22) becomes

Q̃kSC

(
uk, γk |θ[t]

)
= s log [φ (uk)]−

1− s
2

× Eξ|z[t]

∥∥∥∥∥z[t] −
k−1∑
h=0

(
Xu

[t+1]
h

)
γ

[t+1]
h − (Xuk) γk −Uξ

∥∥∥∥∥
2

R[t]−1

|θ[t]

 ,
(6.25)

still imposing both u[t+1]
0 and γ

[t+1]
0 to be null.

Algorithms 6.7 recapitulates the generic iteration of both ridge–penalised
and SC–regularised EMs for GLMM with an AR(1) random time–specific ef-
fect. Steps (1)− (3) have to be repeated until stability of parameters θ is
reached.
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Algorithm 6.7: The ridge–penalised and SC–regularised EMs extended
to GLMM with an AR(1) random time–specific effect (generic iteration).

(1) Linearisation step: Set

M[t] :

∣∣∣∣∣∣∣∣
z[t] =

{
Xβ +Uξ + e[t] for ridge penalisation∑K

k=1 (Xuk) γk +Uξ + e[t] for SC regularisation

with: Var
(
e[t] | ξ

)
= R[t]

(2) Estimation step:

For ridge penalisation: θ = (β, σ2
1, σ

2
2, ρ)

Compute Qpen

(
θ, λ |θ[t]

)
= Eξ|z[t]

[
`c
(
θ; z[t], ξ

)
− λ

2β
Tβ |θ[t]

]
Set

(
σ2

1
[t+1]

, σ2
2

[t+1]
, ρ[t+1]

)
= arg max

σ2
1 ,σ

2
2 ,ρ

Qpen

(
θ, λ |θ[t]

)
Update λ[t+1] using formula (6.24)
Set β[t+1] = arg max

β
Qpen

(
θ, λ[t+1] |θ[t]

)
For SC regularisation: θ = (u1, . . . ,uK , γ1, . . . , γK , σ

2
1, σ

2
2, ρ)

Compute
Qreg

(
θ |θ[t]

)
= Eξ|z[t]

[
s `c
(
θ; z[t], ξ

)
+ (1− s) log [φ (u)] |θ[t]

]
Set

(
σ2

1
[t+1]

, σ2
2

[t+1]
, ρ[t+1]

)
= arg max

σ2
1 ,σ

2
2 ,ρ

Qreg

(
θ |θ[t]

)
∀k ∈ {1, . . . , K} ,

Compute Q̃kreg

(
uk, γk |θ[t]

)
as defined by (6.25)

Set u[t+1]
k = arg max

uk∈S
[t+1]
k

Q̃kreg

(
uk, γ

[t]
k |θ

[t]
)

Set γ[t+1]
k = arg max

γk
Q̃kreg

(
u

[t+1]
k , γk |θ[t]

)
(3) Updating step:

Set ξ[t+1] = Eξ|z[t]

(
ξ |θ[t+1]

)
Update working variables z[t+1] and variance matrixR[t+1]
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6.8 Comparative results on simulated Poisson data

6.8.1 First design

The goal of this section is to characterise the relative performances of
ridge– and SC–regularisations in the framework of a log–link Poisson regres-
sion, including both individual and autoregressive time–specific random ef-
fects. We thus simulate response y as

y∼P
(

exp (Xβ +U1ξ1 +U2ξ2)
)
. (6.26)

Explanatory variablesX consist of three independent bundles of standardised
variables X1, X2 and X3, so that X = [X1|X2|X3]. The level of redundancy
within each bundle is tuned through parameter τ ∈ [0, 1] such that correlations
among explanatory variables within bundleXj are

cor (Xj) = τ11T + (1− τ)I.

BundleX1 contains 10 noise variables that play no explanatory role, whileX2
andX3 are two bundles of 5 variables each, which homogeneously contribute
to model y. Hence our choice for the fixed effects parameters is

β = ( 0, . . . . . . , 0︸ ︷︷ ︸
10 times

, b, . . . . . . , b︸ ︷︷ ︸
10 times

)T,

with b = 1 in practice. In all the simulations, we set σ1 = σ2 = 0.3, to prevent
the random part of the linear predictor from being too huge.

This study aims at answering 4 questions:

1. Is the convergence assured ? (Figure 6.1)

2. Is there any sensitivity to the value of ρ ? (Figure 6.2)

3. How good are the estimations ? (Figure 6.3)

4. Does the use of SC–regularisation facilitate the interpretation of the
model ? (Figure 6.4)

One of the objectives of the simulation study is to verify that the components
built by SCEM align with the bundles of predictive variables, despite the pres-
ence of a large nuisance bundle.
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Is the convergence assured ? 20 simulations are conducted according to
model (6.26) for q1 = 20 individuals, q2 = 20 time–points, ρ = 0.5 and τ = 0.8.
In order to check the convergence of ridge– and SC–regularised EMs, we con-
sider the L2–convergence criterion between two iterations. Figure 6.1 presents
the 20 trajectories of the criterion

∥∥∥β[t+1] − β[t]
∥∥∥

2
, t ∈ {2, . . . , 500}, for both

ridge and SC regularisations. The SCEM requires about a hundred iterations
to achieve convergence but compared to ridge, the estimations provided are
much more stable.
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Figure 6.1 – First design – Convergence assessment. 20 trajectories of
∥∥∥β[t+1] − β[t]

∥∥∥
2

are graphed, for t ∈ {2, . . . , 500} and for both ridge and Supervised Component regularisa-
tions.
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Is there any sensitivity to the value of ρ ? We still consider q1 = q2 = 20,
and τ = 0.8. For each simulated value of ρ ∈ {−0.9,−0.8, . . . , 0.8, 0.9}, 120
samples are generated, and Figure 6.2 shows the boxplots of the estimated
values ρ̂ obtained with the SC regularisation according to their real values. The
same behaviour is observed with the ridge–based regularised EM. They seem
close to the first bissector, showing that the estimates are good whatever the
real value of the parameter. Each estimate was obtained by choosing ρ[0] = 0
as the starting value of the EM algorithm, For this reason, there is a slight
downward bias for simulated autocorrelations close to 1 and a slight upward
bias for simulated autocorrelations close to −1.
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Figure 6.2 – First design – Sensitivity to the value of ρ. The graph shows the boxplots of
estimated autocorrelations ρ̂ obtained with SCEM according to real values.

— 170 —



6.8. Comparative results on simulated Poisson data

How good are the estimations ? The number of individuals is set to q1 = 10
while the number of time–points q2 varies from 10 to 100. For each value of q2,
we generate 50 samples according to (6.26), with ρ = 0.5 and τ = 0.8. Figure 6.3
gives the RMSEs relative to fixed effects parameter β and autocorrelation pa-
rameter ρ. There are no significant differences between ridge and SC concern-
ing parameter ρ, the same behaviour being observed for parameters σ2

1 and σ2
2 .

By contrast, compared to ridge, the SC–based regularisation performs a better
estimation of the fixed effects β, very likely due to the importance given to the
strong inner structures ofX .
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Figure 6.3 – First design – Estimate accuracies. The RMSEs of fixed–effect parameter
and autocorrelation parameter estimates are represented, for both ridge and Supervised Com-
ponent regularisations. They are obtained over 50 samples for each number of time–points
q2 ∈ {10, 20, . . . , 100}.
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Does the use of SC–regularisation facilitate the interpretation of the model ?
Figure 6.4 shows an example of the first component planes output by SCEM
for τ = 0.5. Considering such level of redundancy, our cross–validation se-
lects only two components (associated in most cases with a bundles–locality
parameter close to 3 and a trade–off parameter close to 1), which are the ones
that explain the response. Regardless of the cross–validation results, we edit
component plane (1, 3). Interestingly, although bundle of noise is the one with
maximum inertia, it appears only along the third component. The algorithm
thus detected its structural relevance, but also the fact that it did not play any
explanatory role. It is essential to note that the components obtained by the SC
method are much better constructed than those of classical methods such as
PCA or PLS. Indeed, with such a design, the first principal component focuses
on the noise bundle, and the first PLS component combines the two predic-
tive bundles into a single one, which greatly deteriorates their predictive and
interpretative power.
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Figure 6.4 – First design – Model interpretation. Component planes (1, 2) and (1, 3)
obtained using the SC regularisation are given here. The black arrows represent the explanatory
variables while the red one represent the projection of the X–part of the linear predictor. The
percentage of inertia captured by each component is given in parentheses.
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6.8.2 Second design

Given the individual random effect, ξ1, and the autoregressive time–
specific random effect, ξ2, we still simulate response y as

y∼P
(

exp (Xβ +U1ξ1 +U2ξ2)
)
. (6.27)

The main change is in the structure of explanatory variables. We now consider
thatX =

[
X1 |X2 |X3 |X4

]
, where

I X1 =
[
x1 | . . . | x10

]
is a nuisance bundle of 10 correlated variables that

play no explanatory role,

I X2 =
[
x11 | . . . | x14

]
contains 4 uncorrelated noise variables (without

explanatory role either),

I X3 =
[
x15 | . . . | x19

]
is a bundle of 5 correlated variables that partially

contribute to model y,

I X4 contains a single predictive variable, x20.

The fixed–effect parameter is therefore set to

β =
(
b1, . . . . . . . . . . . . , b1︸ ︷︷ ︸

10 times

, b2, . . . . . . , b2︸ ︷︷ ︸
4 times

, b3, . . . . . . , b3︸ ︷︷ ︸
5 times

, b4

)T

,

where b1 = b2 = 0, b3 = 0.2, b4 = 1 in practice. As explained in Section 6.8.1,
parameter τ tunes the level of redundancy within bundlesX1 andX3. Finally,
we set σ2

1 = σ2
2 = 0.5.
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Convergence assessment. 20 simulations are conducted according to model
(6.27) for q1 = 10 individuals, q2 = 20 time–points, ρ = 0.5 and τ = 0.6.
Figures 6.5, 6.6 and 6.7 show the 20 trajectories of criteria

∥∥∥σ2
1

[t+1] − σ2
1

[t]
∥∥∥

2
,∥∥∥σ2

2
[t+1] − σ2

2
[t]
∥∥∥

2
, and

∥∥ρ[t+1] − ρ[t]
∥∥

2 respectively, for both ridge and SC regu-
larisations. The trajectories for the fixed–effect parameter are similar to those
presented in Figure 6.1. The ridge procedure seems slightly faster than the
Supervised Component regularisation: ridge requires about 75 iterations to
achieve convergence while the SCEM requires about a hundred. Interestingly,
compared to ridge, the estimations provided by SCEM are more stable, in-
cluding for parameters σ2

1 , σ2
2 and ρ. This can be explained by the fact that the

shrinkage parameter of the ridge regression is autocalibrated at each iteration,
while the SCEM tuning parameters, (K, s, l), are previously calibrated through
a cross–validation. For the fixed–effect parameter, this stability is enhanced by
the ability of SCEM to focus on the most predictive structures withinX .
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Figure 6.5 – Second design – Convergence assessment. 20 trajectories of∥∥∥σ2
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are graphed, for t ∈ {2, . . . , 500} and for both ridge and Supervised Com-

ponent regularisations.
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Sensitivity to the value of ρ. We still consider q1 = 10, q2 = 20, and τ = 0.6.
For each simulated value of ρ ∈ {−0.95,−0.9, . . . , 0.9, 0.95}, 100 samples are
generated. This time, Figure 6.8 shows the boxplots of the estimated values ρ̂
obtained with the ridge regularisation according to their real values. A similar
graph is obtained with the SC–based regularised EM. The same behaviour as
in the first design is observed here.
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Figure 6.8 – Second design – Sensitivity to the value of ρ. The graph shows the boxplots
of the estimated autocorrelations ρ̂ obtained with the ridge regularisation according to real
values.
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Comparison of estimate accuracies. The number of individuals is still set to
q1 = 10 while the number of time–points q2 varies from 10 to 80. For each value
of q2, we generate 50 samples according to (6.27), with ρ = 0.5 and τ = 0.6. To
be more comprehensive, Figure 6.9 gives the RMSEs relative to fixed–effect pa-
rameter β, individual and time–specific variance components σ2

1 and σ2
2 , and

autocorrelation parameter ρ. As observed in the first design, there are no sig-
nificant differences between ridge and SC concerning parameters σ2

1 , σ2
2 and

ρ. By contrast, thanks to the ability of SCEM to focus on the most predictive
structures withinX , it performs a better estimation of the fixed effects β.
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Figure 6.9 – Second design – Estimate accuracies. The RMSEs of parameter estimates
are represented, for both ridge and Supervised Component regularisations. They are obtained
over 50 samples for each number of time–points q2 ∈ {10, 20, . . . , 80}.
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Model interpretation Figure 6.10 shows an example of the first component
planes obtained for q1 = 10, q2 = 20, ρ = 0.5 and τ = 0.5. Our cross–validation
selects only two components, but component planes (1, 3) and (2, 3) are also
represented. Due to the high level of redundancy within X1 and X3, the op-
timal trade–off parameter selected through cross–validation is still close to 1.
Because of the presence of an isolated predictive variable, namely x20, the opti-
mal bundle–locality parameter is rather close to 10. The first component aligns
with bundle X3 which partially contribute to model y, and the second one
aligns with the single predictive variable x20. The nuisance bundle appears
only along the third component. SCEM is therefore able to focus primarily on
the predictive variable bundle, and also to detect a single predictive variable
among irrelevant others.
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Figure 6.10 – Second design – Model interpretation. We give component planes (1, 2),
(1, 3) and (2, 3) issued from SCEM. No thresholding is implemented here, so that all variables
are visible on all component planes.
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6.9 Discussion and conclusions

The two methods proposed previously are intended to focus on regres-
sion modelling for panel data by means of GLMMs involving a large number
of explanatory variables. They are designed to address three complementary
issues.

1. The two–way random effects model allows to consider simultaneously
a dependence within individuals on which data is repeatedly collected,
and a time–specific effect reflecting the hidden influence of a common
context (with a certain temporal inertia) shared by all the individuals.

2. GLMMs handle the wide range of response distributions considered in
this work, allowing the modelling of many types of outcomes.

3. The regularisation procedures implemented address the strong correla-
tions within the redundant explanatory variables.

There are immediate applications of the proposed methods, particularly in epi-
demiology. Indeed, clinical studies involve repeated observations over (long
periods of) time of different patients with their own characteristics. The many
variables collected are prone to high redundancies because they are often seen
as proxies of latent phenomena that are difficult to measure directly (well–
being for instance). It is then almost impossible to separate the contribution of
each explanatory variable, which greatly complicates the model interpretation.

Our ridge–penalised EM algorithm is a simple way to solve the problem
since the L2–regularisation mechanically reduces the variance of the fixed–
effect estimator. At first sight, the iterative calibration of the shrinkage param-
eter at each iteration of the EM may seem odd in the Gaussian case since the
underlying model does not change, but it avoids the high algorithmic cost of
a classical cross-validation. However, this auto–calibration becomes necessary
in non–Gaussian cases, because the initial model is linearised at each iteration.
The major drawback of ridge regression is that it considers the high correla-
tions among the explanatory variables as a pure nuisance instead of a possible
asset, resulting in a model that remains difficult to interpret.

The supervised component–based regularisation is designed to address
this drawback: in the EM algorithm, instead of subtracting a penalty term to
the likelihood, we add a bonus term to favour the alignment of components on
strong directions. The theory of the penalised EM algorithm also applies in this
framework. Compared to ridge, estimates provided by the SC–regularisation
are generally more stable and accurate. In addition, it makes interpretation of
the linear predictor easier through its decomposition on interpretable compo-
nents.
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6.10 Appendices

6.10.1 Calculus — Ridge EM for Gaussian panel data

6.10.1.1 Reminder of the model, notations and hypothesis

Recall that Section 6.5 focuses on the Gaussian panel data model given by

y = Xβ +U1ξ1 +U2ξ2 +U0ξ0. (6.28)

q1 being the number of individuals and q2 the number of time–points, random
effects design matrices in (6.28) write U1 = Iq1 ⊗ 1q2 , U2 = 1q1 ⊗ Iq2 , and U0 =
In, where n = q0 = q1×q2. Besides, in Sections 6.2 and 6.5, it was assumed that

I ξ1∼Nq1 (0,D1), whereD1 = σ2
1A1,

I ξ2∼Nq2 (0,D2), whereD2 = σ2
2A2 (ρ),

I ξ0∼Nq0 (0,D0), whereD0 = σ2
0A0,

I ξ0, ξ1 and ξ2 are independent.

We also recall the expression of the associated objective function already
defined by (6.17):

Qpen

(
θ |θ[t]

)
= cte− 1

2


2∑
j=0

qj log
(
σ2
j

)
+

1∑
j=0

Eξ|y
(
ξT
jA
−1
j ξj |θ

[t]
)

σ2
j

+

Eξ|y
(
ξT

2A
−1
2 (ρ)ξ2 |θ[t]

)
σ2

2
+ log (|A2(ρ)|) + λβTβ

 .

6.10.1.2 Updating the autocorrelation and the time–specific variance com-
ponent

System (6.18) follows from the following lemma:

Lemma 6.2. Let q2 be the number of time–points. Recall that correlation ma-

trix A2(ρ) =
(
ρ|i−j|

1− ρ2

)
16i,j6q2

is of size (q2 × q2), and let us note momentarily

|Aq2
2 (ρ)| its determinant. We then have

∀q2 ∈ N?, |Aq2
2 (ρ)| = (−1)q2

(
−1 + ρ2)q2−2

.

— 180 —



6.10. Appendices

Proof. By mathematical induction. Let us define P(q2) the statement

P(q2) : |Aq2
2 (ρ)| = (−1)q2

(
−1 + ρ2)q2−2

.

I P(1) is easily seen to be true since

∣∣A1
2(ρ)

∣∣ =
∣∣∣∣ 1
1− ρ2

∣∣∣∣ = 1
1− ρ2 = (−1)1 (−1 + ρ2)1−2

.

I Assume P(q2) holds for some value of q2. We then have

∣∣Aq2+1
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣
by performing the column operation: colq2+1 ← colq2+1 − ρcolq2 . Using
the induction hypothesis that P(q2) holds, we have∣∣Aq2+1

2 (ρ)
∣∣ =

(
1− ρ2)× (−1)2(q2+1) |Aq2

2 (ρ)|
= −

(
−1 + ρ2) (−1)q2

(
−1 + ρ2)q2−2

= (−1)q2+1 (−1 + ρ2)q2−1
,

which concludes the proof.

The following equivalences hold:
∂

∂ρ

[
Qpen

(
θ |θ[t]

)]
= 0

∂

∂σ2
2

[
Qpen

(
θ |θ[t]

)]
= 0
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⇐⇒
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Putting back (6.29b) into (6.29a) provides

2(q2 − 2)ρ
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By defining Sρ := A−1
2 (ρ), S′ρ := ∂A−1

2 (ρ)
∂ρ

, and Kρ := 2(q2 − 2)ρ
q2(−1 + ρ2)Sρ + S′ρ

(6.29) is equivalent to
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2Kρξ2 |θ[t]
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2 Eξ|y
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ξT
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.

Finally, as suggested by Section 6.5, update ρ[t+1] that fulfils

J [t] (ρ[t+1]) = 0

can be found using a Newton–Raphson method. Then, in a second time, this
allows the time–specific variance component to be updated as

σ2
2

[t+1] = q−1
2 Eξ|y

(
ξT

2Sρ[t+1]ξ2 |θ[t]
)
.
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6.10.1.3 Updating the individual–specific and the residual variance compo-
nents

For each j ∈ {0, 1}, the first–order conditions lead to

∂

∂σ2
j

[
Qpen

(
θ |θ[t]

)]
= 0

⇐⇒ ∂

∂σ2
j

qj log
(
σ2
j

)
+

Eξ|y
(
ξT
jA
−1
j ξj |θ

[t]
)

σ2
j

 = 0

⇐⇒ qj
σ2
j

−
Eξ|y

(
ξT
jA
−1
j ξj |θ

[t]
)

σ4
j

= 0

⇐⇒ σ2
j = q−1

j Eξ|y
(
ξT
jA
−1
j ξj |θ

[t]
)
.

The associated updates then simply write

∀j ∈ {0, 1} , σ2
j

[t+1] = q−1
j Eξ|y

(
ξT
jA
−1
j ξj |θ

[t]
)
. (6.30)

6.10.1.4 Updating the fixed–effect parameter

Concerning the fixed–effect parameter, we have

∂

∂β

[
Qpen

(
θ |θ[t]

)]
= 0

⇐⇒ ∂

∂β

[
1
σ2

0
Eξ|y

(
ξT

0A
−1
0 ξ0 |θ[t]

)
+ λβTβ

]
= 0

⇐⇒ ∂

∂β

{
Eξ|y

[(
y −Xβ −

2∑
j=1

Ujξj

)T

A−1
0

(
y −Xβ −

2∑
j=1

Ujξj

)
|θ[t]

]

+ λσ2
0β

Tβ

}
= 0

⇐⇒ ∂

∂β

{
Eξ|y

[
−2βTXTA−1

0

(
y −

2∑
j=1

Ujξj

)
|θ[t]

]
+ βTXTA−1

0 Xβ

+ λσ2
0β

Tβ

}
= 0.
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As a result,

∂

∂β

[
Qpen

(
θ |θ[t]

)]
= 0

⇐⇒ − A2XTA−1
0 Eξ|y

(
y −

2∑
j=1

Ujξj |θ[t]

)
+ A2XTA−1

0 Xβ + A2λσ2
0β = 0

⇐⇒
(
XTA−1

0 X + λσ2
0Ip
)
β = XTA−1

0 Eξ|y

(
y −

2∑
j=1

Ujξj |θ[t]

)

⇐⇒ β =
(
XTA−1

0 X + λσ2
0Ip
)−1

XTA−1
0 Eξ|y

(
y −

2∑
j=1

Ujξj |θ[t]

)
.

This gives the following update:

β[t+1] =
(
XTA−1

0 X + λσ2
0

[t+1]
Ip

)−1
XTA−1

0 Eξ|y

(
y −

2∑
j=1

Ujξj |θ[t]

)
, (6.31)

where σ2
0

[t+1] is given by (6.30). As suggested in Section 6.5, it is possible to
take advantage of the updates ρ[t+1] and σ2

j
[t+1]

, j ∈ {0, 1, 2}, to calibrate the
shrinkage parameter λ at each iteration by generalised cross–validation.

6.10.1.5 Explicit expressions of conditional expectations

Since ξ1 and ξ2 are independent, their joint distribution is given by

ξ =
(
ξ1
ξ2

)
∼Nq1+q2 (0,D) ,

where D = bDiag (D1,D2), D1 = σ2
1A1, D2 = σ2

2A2(ρ). In addition, the joint
distribution of Y and ξ writes(

Y
ξ

)
∼Nq0+q1+q2

([
Xβ
0

]
,

[
Γ UD

DU T D

])
,

where Γ = Var(Y ) =
1∑
j=0

(
σ2
j UjAjU

T
j

)
+ σ2

2 U2A2(ρ)U T
2. In what follows, we

define {
Vj = UjAjU

T
j , j ∈ {0, 1}

V2 = U2A2(ρ)U T
2
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so that matrix Γ simply rewrites

Γ =
2∑
j=0

σ2
jVj .

Explicit expressions of conditional expectations are based on the following
proposition.
Proposition 6.3. (i) The conditioning properties of the Gaussian distribution

yields the following conditional distribution:

ξ|Y = y∼Nq1+q2

(
DU TΓ−1 (y −Xβ) ,D −DU TΓ−1UD

)
.

(ii) For any symmetric matrixM ,

Eξ|y (ξTMξ) =
[
DU TΓ−1 (y −Xβ)

]T
M
[
DU TΓ−1 (y −Xβ)

]
+ Trace

[
M
(
D −DU TΓ−1UD

)]
.

To avoid any ambiguity, note that at step t of the algorithm, random–effect
variance matrices are given byD

[t]
j = σ2

j
[t]
Aj , j ∈ {0, 1}

D
[t]
2 = σ2

2
[t]
A

[t]
2 , whereA[t]

2 = A2
(
ρ[t]) ,

and

Var[t](Y ) = Γ[t] =
1∑
j=0

(
σ2
j

[t]
Vj

)
+ σ2

2
[t]
V2

[t],

where V2
[t] = U T

2A
[t]
2 U2.

Conditional expectation involved in updating individual and residual vari-
ance components: For j ∈ {0, 1},

Eξ|y
(
ξT
jA
−1
j ξj |θ

[t]
)

=
[
D

[t]
j U

T
jΓ[t]−1

(
y −Xβ[t]

)]T

A−1
j

[
D

[t]
j U

T
jΓ[t]−1

(
y −Xβ[t]

)]
+ Trace

[
A−1
j

(
D

[t]
j −D

[t]
j U

T
jΓ[t]−1

UjD
[t]
j

)]
=
(
y −Xβ[t]

)T

Γ[t]−1
Uj

(
σ2
j

[t]
Aj

)
Z
ZZ
A−1
j

(
σ2
j

[t]
Z
ZAj

)
U T
jΓ[t]−1

(
y −Xβ[t]

)
+ Trace

[
A−1
j

(
σ2
j

[t]
Aj

)]
− Trace

[
Z
ZZ
A−1
j

(
σ2
j

[t]
Z
ZAj

)
U T
jΓ[t]−1

Uj

(
σ2
j

[t]
Aj

)]
= σ4

j
[t]
(
y −Xβ[t]

)T

Γ[t]−1
VjΓ[t]−1

(
y −Xβ[t]

)
+ qjσ

2
j

[t] − σ4
j

[t] Trace
(
Γ[t]−1

Vj

)
.
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Conditional expectation involved in updating autocorrelation and time–
specific variance component:

Eξ|y
(
ξT

2Kρξ2 |θ[t]
)

= σ4
2

[t]
(
y −Xβ[t]

)T

Γ[t]−1
U2A

[t]
2 KρA

[t]
2 U

T
2Γ[t]−1

(
y −Xβ[t]

)
+ σ2

2
[t] Trace

(
KρA

[t]
2

)
− σ4

2
[t] Trace

(
KρA

[t]
2 U

T
2Γ[t]−1

U2A
[t]
2

)
.

Eξ|y
(
ξT

2Sρ[t+1]ξ2 |θ[t]
)

= σ4
2

[t]
(
y −Xβ[t]

)T

Γ[t]−1
U2A

[t]
2 Sρ[t+1]A

[t]
2 U

T
2Γ[t]−1

(
y −Xβ[t]

)
+ σ2

2
[t] Trace

(
Sρ[t+1]A

[t]
2

)
− σ4

2
[t] Trace

(
Sρ[t+1]A

[t]
2 U

T
2Γ[t]−1

U2A
[t]
2

)
= σ4

2
[t]
(
y −Xβ[t]

)T

Γ[t]−1
U2A2

(
ρ[t])A−1

2
(
ρ[t+1])A2

(
ρ[t])U T

2Γ[t]−1
(
y −Xβ[t]

)
+ σ2

2
[t] Trace

[
A−1

2
(
ρ[t+1])A2

(
ρ[t])]

− σ4
2

[t] Trace
[
A−1

2
(
ρ[t+1])A2

(
ρ[t])U T

2Γ[t]−1
U2A2

(
ρ[t])] .

Conditional expectation involved in updating fixed–effect parameter:

Eξ|y

(
Y −

2∑
j=1

Ujξj |θ[t]

)
= y −

2∑
j=1

Uj Eξ|y
(
ξj |θ[t]

)
= y −

2∑
j=1

UjD
[t]
j U

T
jΓ[t]−1

(
y −Xβ[t]

)
= y −

2∑
j=1

σ2
j

[t]
V

[t]
j Γ[t]−1

(
y −Xβ[t]

)
= y −

(
Γ[t] − σ2

0
[t]
V0

)
Γ[t]−1

(
y −Xβ[t]

)
= Xβ[t] + σ2

0
[t]
V0Γ[t]−1

(
y −Xβ[t]

)
.
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6.10.2 Calculus — SCEM for Gaussian panel data

6.10.2.1 Updating loading–vector uk and its associated parameter γk

Recall that the updates of the loading–vector uk and its associated param-
eter γk involve objective function Q̃kSC defined as

Q̃kSC

(
uk, γk |θ[t]

)
= s log [φ (uk)]− (1− s)

×
Eξ|y

(∥∥∥y −∑k−1
h=0

(
Xu

[t+1]
h

)
γ

[t+1]
h − (Xuk) γk −Uξ

∥∥∥2

A−1
0

|θ[t]
)

2σ2
0

[t+1] .

The new values of u[t+1]
k and γ

[t+1]
k are then obtained by setting

u
[t+1]
k = arg max

uk∈S
[t+1]
k

Q̃kSC

(
uk, γ

[t]
k |θ

[t]
)

γ
[t+1]
k = arg max

γk
Q̃kSC

(
u

[t+1]
k , γk |θ[t]

)
.

(6.32)

In (6.32),

S [t+1]
k =

{
u ∈ Rp | uTM−1u = 1 and (Xu)TPF

[t+1]
k−1 = 0

}
,

where P reflects the a priori relative importance of observations (by default
P = 1

n
In), and F [t+1]

k−1 concatenates the first k − 1 components computed at
iteration t+ 1, namely

F
[t+1]
k−1 =

[
Xu

[t+1]
1 | . . . | Xu[t+1]

k−1
]
.

The first maximisation is performed using the PING algorithm, de-
tailed in Appendix 5.8.3. For the second maximisation, let us note B[t+1]

k−1 =∑k−1
h=0

(
Xu

[t+1]
h

)
γ

[t+1]
h . The maximisation program

max
γk

{
Q̃kSC

(
u

[t+1]
k , γk |θ[t]

)}
is equivalent to the following minimisation:

min
γk

{
Eξ|y

(∥∥∥(y −Uξ −B[t+1]
k−1

)
−
(
Xu

[t+1]
k

)
γk

∥∥∥2

A−1
0

|θ[t]
)}

.
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We then have

∂

∂γk

{
Eξ|y

(∥∥∥(y −Uξ −B[t+1]
k−1

)
−
(
Xu

[t+1]
k

)
γk

∥∥∥2

A−1
0

|θ[t]
)}

= 0

⇐⇒ ∂

∂γk

{
γ2
k

(
Xu

[t+1]
k

)T

A−1
0

(
Xu

[t+1]
k

)
− 2 γk

(
Xu

[t+1]
k

)T

A−1
0

[
Eξ|y

(
y −Uξ |θ[t]

)
−B[t+1]

k−1

]}
= 0

⇐⇒ A2 γk
(
Xu

[t+1]
k

)T

A−1
0

(
Xu

[t+1]
k

)
− A2

(
Xu

[t+1]
k

)T

A−1
0

[
Eξ|y

(
y −Uξ |θ[t]

)
−B[t+1]

k−1

]
= 0

This gives the following update:

γ
[t+1]
k =

[(
Xu

[t+1]
k

)T

A−1
0

(
Xu

[t+1]
k

)]−1

×
(
Xu

[t+1]
k

)T

A−1
0

[
Eξ|y

(
y −Uξ |θ[t]

)
−B[t+1]

k−1

]

6.10.2.2 Updating the other parameters

Updates of the other parameters are obtained using the same formulas as
for ridge, with

β[t] =
K∑
k=1

u
[t]
k γ

[t]
k .
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Ongoing work and perspectives

The world is full of collinearities
and non–linearities.

— Rolf Harald Baayen
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Chapter 7. Ongoing work and perspectives

In three years of PhD research, many questions still remain open and
many perspectives are emerging. In conclusion of this manuscript, we pro-
pose to briefly detail some of the ongoing work and perspectives.

7.1 Mixed–SCGLR for high dimensional data

7.1.1 Key idea

High dimensional data entail thatXTPX is not invertible, causing a prob-
lem with the norm–constraint associated with the VPI measure of Structural
Relevance. A first obvious solution is to replace X with the matrix C of its
principal components associated with non–zero, or even non–negligible eigen-
values. Another possible solution is to replace the constraint with

uT
[
τI + (1− τ)XTPX

]
u = 1,

where τ ∈ (0, 1]. But for now, we are going to focus on the first solution. Let λj
be the eigenvalue associated with the j–th eigenvector vj . The last eigenvector
we consider, vr, is such that

λr∑r
j=1 λj

>
1
p
,

where p is the number of columns of matrix X . The matrix of the correspond-
ing unit-eigenvectors is denoted V =

[
v1 | . . . | vr

]
, and C = XV . The

component f is then sought as a combination of the principal components:
f = Cu = Xũ, where ũ = V u. Mixed–SCGLR then solves{

max s log [φ (u)] + (1− s) log [ψA (u)]
subject to uTCTPCu = 1,

where the goodness–of–fit measure, ψA, is given at each linearisation step by

ψA (u) =
q∑

k=1

∥∥∥zξk∥∥∥2

W
ξ
k

cos2
W
ξ
k

(
zξk, span {Cu,A}

)
=

q∑
k=1

∥∥∥zξk∥∥∥2

W
ξ
k

cos2
W
ξ
k

(
zξk, ΠW

ξ
k

span{Cu,A}z
ξ
k

)
,

and the structural relevance by

φ (u) =
[

p∑
j=1

ωj

(
〈Cu |xj 〉2P

)l] 1
l

=
[

p∑
j=1

ωj

(
uTCTPxjx

T
jPC u

)l] 1
l

.

This idea is tested on simulated data where the number of explanatory
variables p exceeds the number of observations n.
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7.1.2 Data generation

To generate grouped data here, we consider N = 10 groups, and R = 10
observations per group (i.e. a total of n = 100 observations). The random–
effect design matrix is then U = IN ⊗ 1R. Explanatory variables consist of
four independent bundles Xj , j ∈ {0, 1, 2, 3}, such as X =

[
X0 | X1 | X2 |

X3
]
, each explanatory variable being normally simulated with mean 0 and

variance 1. Parameter τ ∈ {0.3, 0.5, 0.7} tunes the level of redundancy within
each bundle: the correlation matrix of bundleXj is

cor (Xj) = τ1pj1T
pj

+ (1− τ)Ipj ,

where pj is the number of variables in Xj . For each k ∈ {1, 2, 3, 4}, random–
effect vectors are simulated as ξk

ind.∼NN (0, σ2
k IN).

Given ξ1, ξ2, ξ3, ξ4, we simulate 4 response–vectors, Y =
[
y1 | y2 | y3 |

y4
]
, having different distributions, as

y1∼Nn
(
µ = Xβ1 +Uξ1, Σ = In

)
y2∼ B

(
p = logit−1

[
Xβ2 +Uξ2

])
y3∼ Bin

(
trials = 30 1n, p = logit−1

[
Xβ3 +Uξ3

])
y4∼P

(
λ = exp

[
Xβ4 +Uξ4

])
.

(7.1)

The response y1 is predicted only by theX1 bundle, y2 only by theX2 bundle,
y3 only by the X3 bundle, y4 by both X2 and X3, while the X0 bundle plays
no explanatory role. Our choice for the fixed–effect parameters is

β1 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
p0 times

, 0.1, . . . . . . . . . . . . 0.1︸ ︷︷ ︸
p1 times

, 0, . . . . . . . . . . . . , 0︸ ︷︷ ︸
p2 times

, 0, . . . . . . . . . , 0︸ ︷︷ ︸
p3 times

)T,

β2 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
p0 times

, 0, . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
p1 times

, 0.1, . . . . . . . . . , 0.1︸ ︷︷ ︸
p2 times

, 0, . . . . . . . . . , 0︸ ︷︷ ︸
p3 times

)T,

β3 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
p0 times

, 0, . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
p1 times

, 0, . . . . . . . . . . . . , 0︸ ︷︷ ︸
p2 times

, 0.05, . . . .., 0.05︸ ︷︷ ︸
p3 times

)T,

β4 = ( 0, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
p0 times

, 0.025, . . . . . . .. 0.025︸ ︷︷ ︸
p1 times

, 0.025, . . . .., 0.025︸ ︷︷ ︸
p2 times

, 0, . . . . . . . . . , 0︸ ︷︷ ︸
p3 times

)T

We consider in turn p = 150 (p0 = 60, p1 = 45, p2 = 30, p3 = 15) and p = 200
(p0 = 80, p1 = 60, p2 = 40, p3 = 20) explanatory variables. The variance
components are set to σ2

1 = σ2
2 = σ2

3 = 0.1, and σ2
4 = 0.05. For each value of

p and for each value of τ , B = 20 samples are generated according to model
(7.1).
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7.1.3 Results

Table 7.1 and Table 7.2 present the results for respectively 150 and 200
explanatory variables. They give the Mean Relative Squared Error (MRSE)
values for βk, k ∈ {1, . . . , 4}, as well as biases and standard errors of esti-
mated variance components, obtained on 20 samples for each value of τ . Some
component planes are given on Figure 7.1 (150 explanatory variables) and Fig-
ure 7.2 (200 explanatory variables).

Table 7.1 – Mean Relative Squared Error (MRSE) values for fixed–effect estimates,
and biases and standard errors for estimated variance components, in the case of
n = 100 observations and p = 150 explanatory variables. The results are obtained on
20 samples for each value of redundancy parameter τ .

β1 β2 β3 β4 σ2
1 σ2

2 σ2
3 σ2

4

τ = 0.3 0.06 0.26 0.19 0.13 −0.01 −0.03 −0.02 0.02
(0.09) (0.09) (0.03) (0.06)

τ = 0.5 0.03 0.20 0.10 0.07 0.01 −0.03 0.00 0.01
(0.11) (0.08) (0.07) (0.07)

τ = 0.7 0.01 0.10 0.05 0.04 0.01 −0.05 0.01 0.02
(0.07) (0.09) (0.10) (0.07)

Table 7.2 – Mean Relative Squared Error (MRSE) values for fixed–effect estimates,
and biases and standard errors for estimated variance components, in the case of
n = 100 observations and p = 200 explanatory variables. The results are obtained on
20 samples for each value of redundancy parameter τ .

β1 β2 β3 β4 σ2
1 σ2

2 σ2
3 σ2

4

τ = 0.3 0.06 0.15 0.18 0.10 −0.04 −0.05 0.01 −0.02
(0.04) (0.09) (0.05) (0.05)

τ = 0.5 0.03 0.17 0.09 0.05 −0.05 0.00 −0.02 −0.01
(0.06) (0.19) (0.04) (0.04)

τ = 0.7 0.01 0.15 0.04 0.03 0.03 0.00 −0.01 −0.02
(0.08) (0.14) (0.05) (0.05)
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Figure 7.1 – Component planes (1, 2), (1, 3) and (1, 4) given by mixed–SCGLR
for n = 100 observations and p = 150 explanatory variables. The within–bundle
correlation is τ = 0.3. The tuning parameter triplet selected through cross–validation is
(K?, s?, l?) = (3, 0.5, 4). Even ifK? = 3, component plane (1, 4) has been edited to emphasise
that the fourth component aligns with the nuisance bundle. For an easier model interpretation,
we hide all the explanatory variables whose cosine with the component plane is lower than 0.5.
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Figure 7.2 – Component planes (1, 2), (1, 3) and (1, 4) given by mixed–SCGLR for
n = 100 observations and p = 200 explanatory variables. The within–bundle correla-
tion is τ = 0.7. With such a high level of redundancy, the optimal trade–off parameter selected
through cross–validation is s? = 0.9. The nuisance bundle is then captured by the second
component, and the optimal number of component selected is K? = 4.
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7.2. Application in Psychiatry: Link between major depressive disorders
and persistent grey–matter volume reduction

7.2 Application in Psychiatry: Link between major
depressive disorders and persistent grey–matter
volume reduction

As suggested at the beginning of Chapter 6, the methods developed in
this thesis have applications in epidemiology and psychiatric sciences. The
purpose of this section is to outline one of them.

The paper by Carrière et al. (2017) addresses the analysis of depres-
sive symptoms and their changes over time. The authors highlight different
trajectories of depressive symptoms over 10 years in community–dwelling–
elderly men and women. They characterise the current and life–time risk
factors (demographic characteristics, level of education, mode of living, etc)
associated with these trajectories, while taking into account the individual
correlation between repeated measures (Proust-Lima et al., 2017, R package
lcmm, latent class mixed models). More recently, Ancelin et al. (2019) fo-
cus on major depressive disorders (MDD). But instead of studying the clin-
ical characteristics of MDD and the associated risk factors, they rather anal-
yse whether lifetime episodes of MDD are associated with specific alterations
in the grey–matter volume. The data set they use is derived from a longitu-
dinal study of neuropsychiatric disorders in community-dwelling French el-
derly adults, called “Enquête de Santé Psychologique — Risques, Incidence et
Traitemement” (ESPRIT, Ritchie et al., 2004). The data set also includes brain–
volume measurements on 636 participants, obtained by MRI protocol and im-
age post–processing (FreeSurfer image analysis suite, http://surfer.nmr.
mgh.harvard.edu/).

We believe that the mixed–SCGLR method could help to understand the
links between the occurrence of MDD and alterations in certain brain areas.

(i) The extended data set ESPRIT contains 528 potentially redundant ex-
planatory variables that concatenate, for each participant, measurements
of the thickness, area, volume and curvature of a number of brain ar-
eas. Many explanatory variables are highly correlated (see the correla-
tion heatmap on Figure 7.3) and we believe that a model regularisation
based on the construction of supervised components could be useful.

(ii) The response variable is binary (depressive or not), which can lead to the
use of a GLM.

(iii) Since the study involves repeated measurements, the intra–subject corre-
lations must be taken into account, hence the use of a GLMM.
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(iv) Finally, a small number of variables does not have to be regularised: gen-
der, age, total brain volume and consumption of antidepressants. We can
meet this requirement by considering these variables as additional ex-
planatory variables.

Figure 7.3 – Correlation heatmap of the explanatory variables of the ESPRIT data
set. The blue color corresponds to a correlation close to 1, the red color corresponds to a
correlation close to −1 and the white color corresponds to a correlation close to 0.

In addition, these studies often require the implementation of hypothe-
sis testing and/or the computation of confidence intervals to determine which
explanatory variables have the greatest impact on the phenomenon. The fol-
lowing section presents the basic ideas of bootstrap–based confidence intervals
for GLMMs.

7.3 Bootstrap–based confidence intervals

Let β̃ be the estimator of β obtained from the original sample S, say of
size n. One way to obtain a confidence interval for each β̃j is to use the boot-
strap approach, which consists of randomly drawB datasets with replacement
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from S, each dataset having size n. Then, by refitting the model on each boot-
strap sample, we can get an idea of the behaviour of the estimators over the B
replications, and build confidence intervals.

Gaussian approximation method. Let β̂
(b)

be the estimate of β associated
with the bth bootstrap sample. The expectation of β̃ is then estimated by

Ê
(
β̃
)

= β = 1
B

B∑
b=1

β̂
(b)
.

The bias of β̃ is estimated by b̂ias
(
β̃
)

= β − β̃, so that the bias–corrected

estimator of β̃ is given by

β̂BC = β̃ − b̂ias
(
β̃
)

= 2β̃ − β.

In the same vein, the variance of β̃j is estimated by

V̂ar
(
β̃j

)
= 1
B − 1

B∑
b=1

(
β̂

(b)
j − βj

)2
.

If the asymptotic normality of β̃ is assumed, an approximate bias–corrected
(1− 2α)–confidence interval for each βj is given by

CI1−2α (βj) =
[
β̃j − b̂ias

(
β̃j

)
± z1−α

√
V̂ar

(
β̃j

)]
=
[

2β̃j − βj ± z1−α

√
V̂ar

(
β̃j

)]
,

where z1−α denotes the (1 − α)–th percentile of the standard Gaussian distri-
bution.

The bootstrap percentile. An alternative approach, called the bootstrap
percentile interval, is to use the empirical quantiles of bootstrap replicates(
β

(1)
j , . . . , β

(B)
j

)
to form a confidence interval for βj . Let q̂α,j (respectively q̂1−α,j)

be the bootstrap–based estimate of the α–th (respectively the (1 − α)–th) per-
centile of β̃j . The following equivalences hold.

P
(
β̃j ∈ [q̂α,j , q̂1−α,j]

)
= 1− 2α

⇔ P
(
β̃j ∈

[
E(β̃j) + q̂α,j − E(β̃j) , E(β̃j) + q̂1−α,j − E(β̃j)

])
= 1− 2α

⇔ P
(
β̃j ∈

[
βj + bias(β̃j) + q̂α,j − E(β̃j) , βj + bias(β̃j) + q̂1−α,j − E(β̃j)

])
= 1− 2α

⇔ P
(
βj ∈

[
β̃j + E(β̃j)− bias(β̃j)− q̂1−α,j , β̃j + E(β̃j)− bias(β̃j)− q̂α,j

])
= 1− 2α
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Now, as E(β̃j) − bias(β̃j) is estimated by β̃j , another approximate (1 − 2α)–
confidence interval for βj is given by

CI1−2α (βj) =
[

2β̃j − q̂1−α,j , 2β̃j − q̂α,j
]
.

Caution on resampling for GLMMs. A particular attention must be paid to
the way in which bootstrap resampling is carried out for GLMMs. Indeed, all
the bootstrap samples have to preserve the grouping structure of the original
sample. Although the method allows statistical inferences to be made, its main
problem is its slowness, as we have to refit the model once for every bootstrap
sample. This is why a large number of variants, improvements (such as the
accelerated bootstrap for instance) have been proposed (Efron and Tibshirani,
1994).

7.4 Mixed–SCGLR for spatial correlation mod-
elling

In this thesis, individual–specific and autocorrelated time–specific ran-
dom effects were considered. Now, it is often necessary to develop models
with spatial correlations, which commonly occur in ecology. In particular, we
could have considered it for the Genus data set (Section 5.6), but we did not do
so since our main interest was to investigate the explanatory structure of the
GLMM fixed design and relate it to interpretable dimensions. As suggested in
the nice review by Sun et al. (2000), many approaches are available for mod-
elling spatial correlations, one of which is to consider conditional autoregres-
sive (CAR) random effects (Besag, 1974).

For instance, Rousset (2017), who developed the R package spaMM for
“spatial Mixed Models”, models spatial correlations with a particular order–1
CAR random effect whose distribution writes

ξ∼Nq
(
0, ς2B−1) . (7.2)

In (7.2),

I ς2 is the unknown spatial–specific variance component, and

I B = I − ρA, where ρ is the unknown autoregressive spatial parameter
andA = (aij)16i,j6q is the adjacency matrix defined by

aij =
{

1 if j is adjacent to i
0 otherwise.
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Interestingly, the R package spaMM is not limited to LMMs as it can also fits
GLMMs with an order–1 CAR random effect. The estimation method is based
on different variants of the Laplace approximation, including the PQL of Bres-
low and Clayton (1993) (Section 4.3.3) as also discussed by Lee and Nelder
(1996), which is very close to the Schall’s method (see Section 4.6). spaMM is
therefore very inspiring to extend the mixed–SCGLR method for spatial corre-
lation modelling.

7.5 Mixed–THEME–SCGLR

Very recently, Bry et al. (2018) have extended SCGLR to several the-
matic blocks X1, . . . ,XR of explanatory variables, which led to the “THEME–
SCGLR” method. The search for the rank–1 components f1

1 = X1u
1
1, . . . ,f

1
R =

XRu
1
R, i.e. the rank–1 component of each theme, is carried out through the

program ∣∣∣∣∣∣∣∣∣∣
max

[
ψA (u1, . . . ,uR)

]g R∏
r=1

[
φ (ur)

]sr
subject to uT

rM
−1
r ur = 1, for each r ∈ {1, . . . , R} .

(7.3)

Concerning the tuning parameters g and sr, a common choice is to take: ∀r =
1, . . . , R, sr = s and g = 1 − s. Moreover, in (7.3), φ is one of the Structural
Relevance (SR) measures introduced in Appendix 5.8.1, and ψA is a Goodness–
of–Fit (GoF) measure depending on additional explanatory variablesA. More
precisely, zk andWk denoting respectively the kth working variable and the kth

weight matrix derived from the IRLS algorithm, the GoF measure writes

ψA (u1, . . . ,uR) =
q∑

k=1

‖zk‖2
Wk

cos2
Wk

(
zk, span {X1u1, . . . ,XRuR,A}

)
=

q∑
k=1

‖zk‖2
Wk

cos2
Wk

(
zk, span

{
Xrur, Ãr

})
=: ψÃr (ur) ,

(7.4)

where Ãr = A ∪ {Xjuj | j 6= r}. As (7.4) suggests that the GoF measure can
be seen as a function of a particular ur, Bry et al. (2018) propose to solve (7.3)
by iteratively solving∣∣∣∣∣ max

[
ψÃr (ur)

]1−s [
φ (ur)

]s
subject to uT

rM
−1
r ur = 1.
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The higher rank components are obtained using the same type of program,
but considering appropriate extra orthogonality constraints and playing on
the additional explanatory variables.

The extension of mixed–SCGLR to several blocks of thematic variables,
“mixed–THEME–SCGLR”, appears rather straightforward: it involves iter-
ating mixed–SCGLR on each Xr by considering the components of all the
other blocks as additional explanatory variables. By contrast, compared
to mixed–SCGLR, the explanatory power of mixed–THEME–SCGLR will be
much greater.

7.6 Sparse SCGLR

In all the simulations in Chapters 5 and 6, we considered structured or un-
structured nuisance explanatory variables (i.e. without any explanatory role).
The true coefficients associated with these variables are therefore exactly zero.
However, in the methods we have developed, the explanatory variables that
are not relevant to explain the responses only have near zero weights in the su-
pervised components. In the wake of Lê Cao et al. (2008) and Chun and Keleş
(2010), an interesting perspective would be to introduce an L1–constraint to
our SCGLR–specific criterion (5.7). The hth component, namely fh = Xuh,
would then be obtained by solving

{
max s log [φ (u)] + (1− s) log

[
ψAh−1 (u)

]
− λ ‖u‖1

subject to ‖u‖2
M−1 = 1 and Xu ⊥ f1, . . . ,fh−1.

(7.5)

Note that Chun and Keleş (2010) also proposed an alternative to simply
adding an L1–constraint, by generalising the sparse PCA of Zou et al. (2006).
Then Chung and Keles (2010) have developed an extension of this technique
by integrating it into the GLM framework, in particular to solve classification
problems. We believe that substantial modifications of the PING algorithm are
necessary to solve the maximisations given by (7.5). The approaches and algo-
rithms developed by the above–mentioned authors could be very inspiring.
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7.7 “The world is full of collinearities and non–
linearities”

This thesis was devoted to the construction of so–called “supervised”
components for GLMs and GLMMs. A linear relationship between the pre-
dictor, η, and the supervised components, f1, . . . ,fK , has therefore always
been assumed. However, this linearity assumption may be restrictive in some
situations. To overcome this hypothesis, a large number of PLSR extensions
have been developed (see for instance the overview by Rosipal, 2011). These
methods can be divided into two types of Nonlinear PLS methods. In the
Type I method, the explanatory variables are appended with nonlinear trans-
formations. This results in the mapping of the initial explanatory variables in
a higher dimensional space, and in the implementation of the classical PLSR
on these new variables. By contrast, Type II method assumes a nonlinear re-
lationship within the latent variable structure of the model (Wold et al., 1989).
An interesting perspective could be to draw inspiration from this abundant
literature to develop methods for the construction of supervised components
adapted to highly non–linear contexts.
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Résumé. Une forte redondance des variables explicatives cause de gros problèmes d’identifiabilité et
d’instabilité des coefficients dans les modèles de régression. Même lorsque l’estimation est possible, l’interprétation
des résultats est donc extrêmement délicate. Il est alors indispensable de combiner à leur vraisemblance un critère
supplémentaire qui régularise l’estimateur. Dans le sillage de la régression PLS, la stratégie de régularisation que
nous considérons dans cette thèse est fondée sur l’extraction de composantes supervisées. Contraintes à l’orthogonalité
entre elles, ces composantes doivent non seulement capturer l’information structurelle des variables explicatives,
mais aussi prédire autant que possible les variables réponses, qui peuvent être de types divers (continues ou dis-
crètes, quantitatives, ordinales ou nominales). La régression sur composantes supervisées a été développée pour
les GLMs multivariés, mais n’a jusqu’alors concerné que des modèles à observations indépendantes.
Or dans de nombreuses situations, les observations sont groupées. Nous proposons une extension de la méthode
aux GLMMs multivariés, pour lesquels les corrélations intra–groupes sont modélisées au moyen d’effets aléatoires.
À chaque étape de l’algorithme de Schall permettant l’estimation du GLMM, nous procédons à la régularisation
du modèle par l’extraction de composantes maximisant un compromis entre qualité d’ajustement et pertinence
structurelle. Comparé à la régularisation par pénalisation de type ridge ou LASSO, nous montrons sur données
simulées que notre méthode non seulement permet de révéler les dimensions explicatives les plus importantes
pour l’ensemble des réponses, mais fournit souvent une meilleure prédiction. La méthode est aussi évaluée sur
données réelles.
Nous développons enfin des méthodes de régularisation dans le contexte spécifique des données de panel (impli-
quant des mesures répétées sur différents individus aux mêmes dates). Deux effets aléatoires sont introduits : le
premier modélise la dépendance des mesures relatives à un même individu, tandis que le second modélise un effet
propre au temps (possédant donc une certaine inertie) partagé par tous les individus. Pour des réponses Gaussi-
ennes, nous proposons d’abord un algorithme EM pour maximiser la vraisemblance du modèle pénalisée par la
norme L2 des coefficients de régression. Puis nous proposons une alternative consistant à donner une prime aux
directions les plus “fortes” de l’ensemble des prédicteurs. Une extension de ces approches est également proposée
pour des données non–Gaussiennes, et des tests comparatifs sont effectués sur données Poissonniennes.

Mots clés. Composantes supervisées, pertinence structurelle, régularisation, GLMM multivarié, effets aléa-
toires.

Abstract. High redundancy of explanatory variables results in identification troubles and a severe lack of sta-
bility of regression model estimates. Even when estimation is possible, a consequence is the near–impossibility to
interpret the results. It is then necessary to combine its likelihood with an extra–criterion regularising the estimates.
In the wake of PLS regression, the regularising strategy considered in this thesis is based on extracting supervised
components. Such orthogonal components must not only capture the structural information of the explanatory vari-
ables, but also predict as well as possible the response variables, which can be of various types (continuous or
discrete, quantitative, ordinal or nominal). Regression on supervised components was developed for multivariate
GLMs, but so far concerned models with independent observations.
However, in many situations, the observations are grouped. We propose an extension of the method to multi-
variate GLMMs, in which within–group correlations are modelled with random effects. At each step of Schall’s
algorithm for GLMM estimation, we regularise the model by extracting components that maximise a trade–off be-
tween goodness–of–fit and structural relevance. Compared to penalty–based regularisation methods such as ridge
or LASSO, we show on simulated data that our method not only reveals the important explanatory dimensions for
all responses, but often gives a better prediction too. The method is also assessed on real data.
We finally develop regularisation methods in the specific context of panel data (involving repeated measures on
several individuals at the same time–points). Two random effects are introduced: the first one models the depen-
dence of measures related to the same individual, while the second one models a time–specific effect (thus having
a certain inertia) shared by all the individuals. For Gaussian responses, we first propose an EM algorithm to max-
imise the likelihood penalised by the L2–norm of the regression coefficients. Then, we propose an alternative which
rather gives a bonus to the “strongest” directions in the explanatory subspace. An extension of these approaches is
also proposed for non–Gaussian data, and comparative tests are carried out on Poisson data.

Keywords. Supervised components, structural relevance, regularisation, multivariate GLMM, random ef-
fects.
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